Influences of floral abundance, richness, and spatial distribution on urban garden bee
communities
Montserrat Plascencia ${ }^{1,2}$
Stacy M. Philpott ${ }^{2}$
${ }^{1}$ Department of Ecology and Evolutionary Biology
University of California, Santa Cruz
Santa Cruz, CA 95064, USA
${ }^{2}$ Department of Environmental Studies
University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Abstract

Resource distribution strongly shapes ecological communities. For bees, spatial distribution of floral resources may influence foraging efficiency and population persistence, and thus pollinator communities and conservation. In urban landscapes, gardens provide refuges for bee biodiversity, and depending on local and landscape features, such as the distribution of floral resources, urban gardens may be managed to support bee conservation. We examined whether the abundance, richness, spatial distribution of floral resources within urban gardens influence bee abundance (overall and for common species), species richness, and diversity. We sampled bees using aerial surveys and pan traps, and assessed floral abundance and spatial patterns within 19 urban gardens in the California central coast. We included other local and landscape variables that influence urban bees as additional explanatory factors. We found that floral abundance and spatial distribution, as well as landscape surroundings of the gardens all correlate with different components of bee communities in urban gardens. Bee abundance and honeybee (Apis mellifera) abundance negatively correlated with urban land cover surrounding the gardens. Honeybee abundance increased in sites with less clustered floral resources, whereas bee species richness and bee diversity increased in sites with more clustered floral resources. Surprisingly, bee species richness and diversity decreased in sites with very high floral abundance, potentially due to interactions with honeybees. Others have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

Keywords: Apidae, biodiversity, conservation, California, connectivity, resource distribution, spatial ecology, urbanization

Introduction

Spatial ecology examines how organisms persist in and respond to various landscape structures, patterns, fragmented habitats, and the distribution of resources across those landscapes (Hunter 2002). Metrics such as spatial connectivity help measure species distribution, species persistence and migration (Moilanen and Nieminen 2002), but also allow us to examine the foraging strategies that impact the variation in species community composition (Goulson 1999, Braaker et al. 2014). The spatial distribution of resources (e.g. clustering, size, patchiness) directly influences animal foraging behavior, species richness, and species composition (Goulson 1999, Ribas et al. 2005; Braaker et al. 2014). For instance, insect foraging behavior is influenced by the amount and diversity of available resources, as well as spatial relationships to other resources (Goulson 1999). Thus, the spatial distribution of resources and the diversity and abundance of resources is crucial in supporting an array of communities (Fridley 2002, Anderson et al. 2004, Jha and Kremen 2012). Further, spatial heterogeneity of resources is needed to maintain species composition and richness because it creates various niches that are exploited (Tilman and Pacala 1993). The importance of identifying spatial patterns associated with resource distribution is crucial in understanding area-restricted foraging behavior and to build models that heighten our understanding of community assembly (Pleasants and Zimmerman 1979).

Bees are in decline globally due to low, discontinuous supply of floral resources, disease, habitat fragmentation, and climate change (Cameron et al. 2011, Giannini et al. 2012, Hung et al.

2015, Scheper et al. 2015). Because bees provide pollination services, it is critical to understand factors that drive bee abundance and richness (Breeze et al. 2011, Winfree et al. 2011). Bee communities respond to floral resources, and diversity of floral resources in a habitat and the spatial arrangement of floral resources can affect bee foraging behavior, abundance, species richness, and community composition of bees that visit a site (Harrison and Winfree 2015, Torné-Noguera et al. 2015). For example, bee visitation rates to Nepeta cataria in edges of wooded area differ between large and small patches of floral resources (Sih and Baltus 1987). Similarly, visitation rates to Potentilla gracilis are influenced by the presence of other plant species in the same habitat patch (Thomson 1981). Generally, small bees with limited foraging radius are easily influenced by floral connectivity in a landscape (Torné-Noguera et al. 2015). Resource distributions and connectivity within mosaic landscapes allow foraging orchard bees (Osmia lignaria) to switch to different floral resources and increase offspring production (Williams and Kremen 2007). Tallgrass prairie patches provide abundant floral resources and nesting sites at a spatial scale important for maintaining diversity and abundance of larger bees, such as bumblebees (Hines and Hendrix 2005). Yet, in some circumstances, floral diversity, rather than floral density drives bee foraging and as such, efforts to construct human-made landscapes through a bee lens may allow us to increase pollination services (Jha and Kremen 2012). In any case, loss and changes to habitat causes changes in flower visitation and pollination success (Harrison and Winfree 2015). Thus, impacts of floral composition relative to space and time create complex interactions between pollinators and plants.

Urban gardens can provide habitat refuges for biodiversity, are heavily used by bees, and may support very patchy floral resources. Urban gardens provide semi-natural habitat that can be used by both humans and biodiversity (Goddard et al. 2010, Tanner et al. 2014). The abundance
of urban gardens determines the amount of green space in many urbanized cities, and the amount of urban green space varies from city to city (Cameron et al. 2012). For instance, in cities in England and New Zealand, urban gardens cover between 23-36\% of the city area (Gaston et al. 2005, Loram et al. 2007, Mathieu et al. 2007). Urban gardens support many local, landscape, and socio-political features that may conserve biodiversity. For instance, local features like mulch cover and flowering plant species richness augment spider activity and richness (Otoshi et al. 2015). Garden size and socio-economic status of gardeners are crucial components for promoting avian richness and plant diversity (van Heezik et al. 2013). Further, urban gardens provide floral and nesting resources that may benefit insects (Wojick et al. 2008). Individual gardens may strongly differ in management techniques and thus in vegetation and insect composition (Loram et al. 2011). For bees in particular, carefully planned, human-implemented designs can allow for local features including floral abundance, plant species richness, and appropriate plot sizes to support bee diversity and bee habitat (Frankie et al. 2005). Urban gardens are a key component to bee conservation because they can be managed for continuous floral resources (Threlfall et al. 2015). But we lack information about how garden design, or in other words the spatial distribution of resources, influences bee communities (Wojcik et al. 2008).

In this study, we examined floral resources and bee communities in urban gardens to determine how floral abundance, floral diversity, and floral spatial distributions within urban gardens are associated with changes in bee richness and abundance. We investigated two main research questions: 1) Does bee abundance, richness, and diversity correlate with floral abundance and diversity in gardens? 2) Does the spatial distribution or connectivity of floral resources within gardens influence bee abundance, richness, and diversity? We also examined the role of floral abundance and spatial distribution in relation to other local and landscape
characteristics of urban gardens previously documented as important for urban bee communities.

Methods

Study Sites

We surveyed bee communities, floral resources, and other site characteristics in 18 urban gardens in Monterey, Santa Clara, and Santa Cruz Counties in the Central coast region of California during July and early August 2015 (Fig. 1). Gardens all included some vegetables, and some gardens also included a variety of ornamental, native, and non-native plants. The gardens ranged in size from $444 \mathrm{~m}^{2}$ to $15,525 \mathrm{~m}^{2}$. All gardens had been in production for at least 5 and up to 47 years. At approximately the center of each garden, we established a $20 \times 20 \mathrm{~m}$ plot in which we measured floral abundance, and in and around which we surveyed bees.

Bee surveys

We sampled bees with elevated pan traps and aerial nets (Grundel 2011). We constructed pan traps using 400 ml plastic bowls (yellow, white, and blue) painted with Clear Neon Brand and Clear UV spray paint and mounted each bowl to a PVC coupler with multi-purpose cement. On trapping days, we placed three 1 m tall PVC pipes in the ground in a triangle formation, 5 m apart within the $20 \times 20 \mathrm{~m}$ plots, and placed one bowl of each color on top of 1.2 m high PVC tubes stuck in the ground (Tuell and Isaccs 2009). We placed pan traps on 8-10 July 2015 between 8-9 AM and collected them (daily) between 5-7 PM. We filled bowls with a water and dish soap mixture, approximately 300 ml of water and 4 ml dish soap. At collection time, we emptied contents of each trap into containers, and then transported contents to the lab where we separated the bees from the other insects. We placed bees in vials containing 70\% ethyl alcohol
or immediately pinned and dried bees for identification. We sampled bees using aerial nets on 79 July, 31 July, and 2 August 2015. We searched for and captured bees in nets for a total of 30 min per site. Bees were observed on flowers, within 20 m of and inside the $20 \times 20 \mathrm{~m}$ plots in each site. Once we observed a bee, we captured it using the aerial net, killed bees with ethyl acetate in the field, and then transported specimens to the lab for identification. We used online resources (Ascher and Pickering 2015), image databases (Packer 2015), books (Frankie et al. 2014) and other dichotomous keys (Roberts 1973a; b, Michener 2007, Gibbs 2010) to identify the bees to family, genus, and species. For those bees that we were unable to identify to species, we separated genera into morphospecies. All voucher specimens are currently housed in the Philpott Lab at the University of California, Santa Cruz.

Floral surveys

For floral surveys, we divided the $20 \times 20 \mathrm{~m}$ plot into $1002 \times 2 \mathrm{~m}$ quadrats and assigned each quadrat a spatial coordinate (A-J, 1-10) for use in spatial analysis. Before conducting floral counts in each garden, we first spent 30-45 min observing bee foraging behavior and noting all floral species being visited by bees in that site on that day so that we only counted floral resources being used by bees in that site. Then, within each quadrat, we counted the total number of flowers, and identified all flowering plants to species or morphospecies. Flowers were individually counted and we estimated the floral abundance of inflorescences by counting the number of flowers on one inflorescence and then multiplying by the number of inflorescences in that quadrat. We also noted the color of each flower (white, yellow, purple, red, orange, dark purple, purple, or blue) in each quadrat.

Site characteristics

As other local and landscape scale site characteristics influence bee abundance and richness within our study sites (R. Quistberg et al., unpublished data), we measured other site characteristics to include as explanatory variables. At the local scale, we measured ground cover characteristics. We randomly sampled four $1 \times 1 \mathrm{~m}$ plots within the $20 \times 20 \mathrm{~m}$ plot. Within those plots, we measured ground cover by noting the percent cover from bare soil, herbaceous plants, and mulch. At the landscape scale, we classified the land cover types surrounding each garden. We obtained land cover data from the 2011 National Land Cover Database (NLCD, 30 m resolution) (Homer et al. 2015) and calculated the percent of land cover types in 2 km buffers surrounding each study site. This spatial scale was chosen as bees have a median foraging range of $1.5-2 \mathrm{~km}$ (Zurbuchen et al. 2010). We used the NLCD land cover types to create four surrounding habitat categories: 1) natural habitat (including deciduous [NLCD number 41], evergreen [42], and mixed forests [43], dwarf scrub [51], shrub/scrub [52], and grassland/herbaceous [71]), 2) open (including lawn grass, park, and golf courses [21]), 3) urban (including low [22], medium [23], and high intensity developed land [24]), and 4) agriculture (including pasture/hay [81] and cultivated crop [82]). Other land cover types in the surrounding areas covered $<5 \%$ of the total area and were not included. We assessed land cover with spatial statistics tools in ArcGIS v. 10.1.

Data Analysis

The response variables in the data analyses included overall bee abundance, abundance of Apis mellifera, bee species richness, and bee diversity. We combined pan traps and aerial nets samples to assess total bee abundance (total number of individuals captured), A. mellifera
abundance, and species richness (total number of species captured) for each site. We calculated bee diversity with the Shannon-Wiener Index $\left(\mathrm{H}^{\prime}\right)$ as a diversity metric.

We included floral characteristics, other local factors, and landscape factors as explanatory variables in the analysis. We found a large range in all measured variables in the different study sites (Table 1). For floral characteristics, we focused on total floral abundance and richness in each study site, as well as the spatial distribution of those floral resources within individual quadrats. At the site level, we calculated the total number of flowers and flower species as well as the mean number of flowers, the max number of flowers, and the mean number of white flowers per quadrat. With the data for individual quadrats, we also calculated spatial relationships between the distributions of floral resources. With ArcGIS 10.1, we mapped the 100 quadrats for each site and joined the floral resource data to each quadrat. We focused on quadrats with $\geq 10, \geq 15, \geq 50$, or ≥ 100 flowers per quadrat, ≥ 15 white flowers per quadrat, and ≥ 2 species of flowers per quadrat. Then, for each set of quadrats, we calculated the Nearest Neighbor Ratio (NNR) for each site to measure connectivity of these floral resources using spatial statistics from the ArcGIS 10.1. NNR calculates spatial patterns, such as clustering and dispersion. Smaller NNR values indicate a higher degree of clustering. Thus we included 5 explanatory variables related to floral abundance (total floral abundance in a site, total floral species richness in a site, the mean number of flowers per quadrat, mean number of white flowers per quadrat, and the max number of flowers per quadrat), and 6 variables related to floral distribution (the NNR for quadrats with $\geq 10, \geq 15, \geq 50, \geq 100$, and ≥ 15 white flowers per quadrat, and the NNR for quadrats with ≥ 2 species of flowers). We included 3 other local factors: percent ground cover with bare ground, percent ground cover with herbaceous vegetation, and percent ground cover with mulch. The 4 landscape explanatory variables included were percent of
landscape with open area, natural, agricultural or urban land use within 2 km . Thus, we included 18 explanatory variables.

Because many of the explanatory variables may be correlated, we ran Pearson's correlations and conducted variable selection. We divided explanatory variables into four groups: 1) floral abundance and richness, 2) floral spatial distribution, 3) other local factors, and 4) landscape factors, and ran Person's correlations for variables within each group. We examined which variables were highly correlated $(\mathrm{P}<0.01)$, and selected one of the correlated variables as a representative for subsequent analysis. For floral abundance, the mean number of flowers per quadrat was correlated with maximum flowers per quadrat ($0.919, \mathrm{P}<0.01$), total number of flowers ($0.890, \mathrm{P}<0.01$), and mean number of white flowers ($0.875, \mathrm{P}<0.01$), and so we included mean number of flowers per quadrat and total flower species richness in subsequent models. For floral distribution, NNR for quadrats with ≥ 15 flowers was significantly correlated with NNR for quadrats with ≥ 10 flowers ($0.936, \mathrm{P}<0.01$). Further, NNR for quadrats with ≥ 50 flowers was correlated with NNR for quadrats with ≥ 15 white flowers ($0.905, \mathrm{P}<0.01$) and quadrats with ≥ 2 species of flowers ($-0.630, \mathrm{P}<0.01$). Thus, we included NNR for quadrats with ≥ 15 flowers, NNR for quadrats with ≥ 50 flowers, and NNR for quadrats with ≥ 100 flowers in subsequent models. For other local factors, percent mulch cover was significantly correlated with percent bare cover ($-0.784, \mathrm{P}<0.01$), and so we included percent mulch cover and percent herbaceous cover in subsequent models. For the landscape variables, percent urban land cover was highly correlated with percent natural land cover $(-0.911, \mathrm{P}<0.01)$, and percent open land cover (-0.790 , $\mathrm{P}<0.01$), so we included percent urban land cover and percent agriculture land cover in subsequent models. In all, 9 explanatory variables remained after variable selection.

We used generalized linear models (GLMs) with the glm function in R (R Development

Core Team 2014) to examine relationships between selected floral abundance and distribution variables, other local factors, landscape characteristics and bee abundance, richness, and diversity. We tested all combinations of different variables with the 'glmulti' package (Calcagno and Mazancourt 2010) and selected the top model based on the AICc values. For models where the AICc for top models was within 2 points of the next best model, we averaged models (up to the top 10 models) with the MuMIn package (Barton 2012) and report conditional averages for significant model factors.

Results

We collected 1,354 bee individuals from 43 species. We collected 5 bee families; the most abundant family was Apidae representing 70% of total individuals captured. The most abundant bee species was A. mellifera (58% of individuals captured), followed by Halictus tripartitus (10.11\%), Bombus caliginosus (4.43\%), and Bombus vosnesenskii (1.47\%).

Several floral abundance, distribution, and landscape factors were included in best models, depending on the dependent variable. For the overall bee abundance, the best model only included percent urban land use within 2 km . The percent urban land use negatively correlated with the number of bee individuals ($\mathrm{P}=0.015$, Fig. 2 a). The best model for the abundance of A. mellifera included the NNR for quadrats with ≥ 15 flowers and percent urban land cover within 2 km . The number of A. mellifera individuals declined with increasing percent urban cover ($\mathrm{P}<0.001$, Fig. 2b) and increased with NNR for quadrats with ≥ 15 flowers ($\mathrm{P}<0.001$, Fig. 2c). The best model for bee species richness included NNR for quadrats with ≥ 15 flowers and mean number of flowers in a quadrat in site. Bee species richness was negatively correlated with the mean number of flowers in a quadrat $(\mathrm{P}=0.018$, Fig. 3a) and was lower in sites with
higher NNR for quadrats with ≥ 15 flowers ($\mathrm{P}=0.031$, Fig. 3b). The best model for bee diversity included NNR for quadrats with ≥ 15 flowers and mean number of flowers in a quadrat. Bee diversity declined with increases in mean number of flowers ($\mathrm{P}=0.014$, Fig. 3c), and declined with increases in NNR for quadrats with ≥ 15 flowers ($\mathrm{P}=0.003$, Fig. 3d).

We also noted negative correlations between the abundance of A. mellifera and bee species richness $\left(\mathrm{R}^{2}=-0.561, \mathrm{P}<0.05\right.$, Fig. 4 a$)$ and bee diversity $\left(\mathrm{R}^{2}=-0.715, \mathrm{P}<0.01\right.$, Fig. 4 b$)$.

Discussion

We investigated the effect of floral abundance, distribution, and other local and landscape factors on bee communities and we found that among all variables examined, floral spatial distribution was among the important drivers of bee richness, diversity, and abundance of A. mellifera. In addition, floral abundance and urban land cover are important drivers of bee communities. Below, we discuss the results in the context of our main research questions, and also examine the results in a broader context by exploring potential interactions between A. mellifera and the rest of the bee community.

Bee abundance was significantly negatively correlated with the percent of urban cover in the landscape, but not with other floral abundance or distribution factors, or ground cover characteristics. Habitat loss associated with urbanization is one main cause of bee declines (Martins et al. 2013), and other studies have documented drops in bee abundance with increases in concrete, buildings, and other types of impervious cover at the landscape level (Bates et al. 2011, Threlfall et al. 2015). In addition, impervious surface limits nesting opportunities for bees and can increase bee foraging distances (Fortel et al. 2014). In our study, natural and open land cover negatively correlated with urban land cover, thus impacting bee abundance positively.

Therefore, increases in cover by natural habitats (e.g. forest and grassland) and declines in urban developed cover promote bee abundance. For example, natural habitat provided by green roofs or small patches of ornamental plants can provide suitable habitat for bees to forage and collect floral resources (Tonietto et al. 2011, Garbuzov et al. 2015).

We also found that the abundance of A. mellifera, by far the most common bee species collected in our study, declined with increases in urban cover, increased with more dispersed floral resources, but did not respond to other local factors. Increasing amount of urban cover is implicated in declines of bee abundance, generally (e.g. Potts et al. 2010). However, A. mellifera usually thrives in urban green spaces such as public parks and residential neighborhoods, more so than other wild bees first because A. mellifera is a floral generalist and second because wild bees may lack appropriate nesting habitat in urban areas (Threlfall et al. 2015). Although many papers note A. mellifera as the most common bee found in urban garden studies (e.g., Tommasi et al. 2004, Matteson et al. 2008, Frankie et al. 2009), none actually examine whether landscape features correlate with A. mellifera abundance within urban habitats. In addition, few papers have described floral spatial distribution as an important predictor for honeybees. We found that A. mellifera abundance was higher in sites with more dispersed (i.e. less clustered) floral resources and this finding may provide insight for managing A. mellifera abundance in urban gardens. A. mellifera is a generalist species and its medium size permits it to forage large distances (Greenleaf et al. 2007), and thus we would expect that the species can respond positively to dispersed floral resources (Beekman and Ratnieks 2000). In another types of landscapes, A. mellifera only responded to large landscape scales and increased their density in less seminatural habitats, thus showing adaptation to more fragmented habitats and patchy resources (Steffan-Dewenter et al. 2002). Eusocial insects, such as A. mellifera, that live in large colonies
send out numerous foragers to search for patches with abundant resources. One study reported the colony health or "energy status" of A. mellifera influenced the foraging distance, for instance, when the floral resources were high A. mellifera foraged small patches and short distances, and when resources were low they foraged longer distances and larger patches (Schneider and McNally 1992). Therefore, A. mellifera is more equipped to experience spatial changes in floral resources because they forage at variable distances when floral resources are also variable.

We also found that floral abundance and distribution of floral resources (but not landscape factors) correlated with bee species richness and diversity. We found that bee species richness and diversity was lower in sites with fewer flowers overall. Floral abundance is often implicated in increasing bee richness in urban areas (e.g. Matteson and Langellotto 2010, Wojcik and McBride 2012, Hülsmann et al. 2015). Yet, in contrast to patterns for A. mellifera, we found that sites with more clustered floral resources supported higher bee species richness and diversity. This is a novel finding as the first study to assess how floral distribution within urban ecosystems impacts bee communities and potentially bee conservation. Others have documented increased in abundance of individual bee groups (e.g., bumble bees) in areas with patchy floral resources (Wojcik and McBride 2012), but have not examined entire communities. Clustered floral resources may support an array of bees that forage both short and long distances, but may be particularly important for smaller bees that exhibit limited foraging ranges (Zurbuchen et al. 2010). Further, different bees (even within the same genus) may respond to differently to floral patch size (Sowig 1989). The frequency of pollinator visits may decrease as flower patch size increases because searching for unvisited flowers in small patches may allow bees to optimize their foraging strategy (Goulson 2000). Similarly, floral density effects are strong at low densities because plants facilitate one another's pollinator attraction, while higher floral densities tend to
have weak pollinator attraction because plants compete for pollinator attraction (Essenberg 2012). Bee conservation in intensified agricultural systems (with low floral resources) can be bolstered by adding clumped spatial elements such as hedgerows or buffer strips (Klein et al. 2007). These additions likely work to augment bee diversity because bees in human-managed systems respond to clustered floral resources. For example, in a different agricultural system (tropical coffee systems), bee diversity did not respond to floral resources clumping at the field scale, but bee diversity increased in sites with branch and shrub scale floral clustering, thus emphasizing the notion that responses of bee diversity to floral clustering are dependent both on floral abundance but also on spatial scale (Veddeler et al. 2006).

One of the striking patterns in this study is that A. mellifera and bee species richness and diversity responded to floral spatial distribution in opposite ways - with most bee species responding positively to clustering, and A. mellifera responding negatively to clustering. This prompts the question of whether interactions between A. mellifera and other bee species may be driving the observed patterns. We posit that due to extensive foraging ranges and generalist preferences, A. mellifera could be foraging in dispersed floral patches, allowing smaller bees or other bee species to occupy the clustered patches of flowers. Likewise, A. mellifera presence may restrict access by other bees thru interference competition, or by apparent competition if A. mellifera deplete nectar resources to the extent that other bees search elsewhere. A. mellifera is a suspected stressor that has influenced the interactions with other pollinators (Schweiger et al. 2010). Yet there may be minimal interference of floral resources by honeybees compared to native bees because different bee groups may not share floral resources (Pedro and Camargo 1991). The assumed widespread effects of A. mellifera on other bees are often based on observations, but not long term population assessments (Paini 2004), thus careful consideration
is necessary. Some studies have taken an experimental approach to examine the influences of removal of one numerically dominant bee on foraging patterns of other species. For example, removal of a numerically dominant bee (Bombus sp.) what is from alpine meadows in Colorado influenced the floral visitation of other pollinator species (Brosi and Briggs 2013). One experimental study demonstrated that in small and isolated flower patches, increased honeybee density reduced visitation rates, niche breadth, and reproduction of the red mason bee (Hudewenz and Klein 2015). Regardless, any interactions between A. mellifera and other bee species may have important implications for pollination services in urban gardens. A. mellifera thrives in urban settings (Tommasi et al. 2004), but their high floral visitations have led to a reduction in the fitness of native bees and the flowers other bees pollinate (Gross and Mackay 1998). Generally, honeybees have poor pollination efficiency and may create discrepancies between higher bee visitation rates and lower seed sets in urban sites (Leong et al. 2014). Certainly, further research and experimentation in understanding interactions between native bees and A. mellifera is warranted.

The interaction between humans and gardens is crucial in building a strong environmental community and gardens can bring awareness to important ecosystem services achieved by sustaining biodiversity (Goddard et al. 2010). Urban gardens connect fragmented areas impacted by urbanization and intensified agriculture by linking floral communities, bee communities, and stewardship by the gardeners. The increasing issue of urbanization and loss of habitat puts significant pressures on these isolated gardens to support great diversity, thus it is crucial to study the how to diversify urban systems to promote biodiversity (Philpott et al. 2013). Our main findings show that abundance and spatial distribution of floral resources and landscape factors are important for maintaining diverse and abundant bee communities and could
contribute to management decisions within urban gardens. Our results suggest that bee diversity responded positively to spatial aggregations of floral resources, but that adding too many flowers all over the garden may not encourage bee species richness and diversity. Thus, gardeners might strive to plant several smaller clumped flower patches. At larger scales, promoting natural and open space within urban areas may also encourage overall bee abundance, richness, and conservation and pollination services within urban landscapes.

Acknowledgements

We thank P. Bichier, H. Cohen, M. Egerer, M. MacDonald, J. Burks, R. Schreiber, and S.-S. Thomas for contributing to field data collection and data entry. Thanks to M. Bello and B. Hall for assistance with spatial analysis and GIS. The work was partially supported by the UC MEXUSCONACYT grants for collaborative projects to S. Philpott and H. Morales, UCSC Committee on Research Faculty Research Grant to S. Philpott, and UCSC Heller Endowment Funds to S. Philpott.

References

Anderson, T. M. et al. 2004. Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem. - Oecologia 139: 277-287.

Ascher, J. S. and Pickering, J. 2015. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q? guide=Apoidea_species.

Barton, K. 2012. MuMIn: Multi-model inference. R package version 1.5.2. Available from http://CRAN.R-project.org/package-MuMin.

Bates, A. J. et al. 2011. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. - PLoS One 6: e23459.

Beekman, M. and Ratnieks, F. L. W. 2000. Long-range foraging by the honey-bee, Apis mellifera L. - Funct. Ecol. 14: 490-496.

Braaker, S. et al. 2014. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. - Ecology 95: 1010-1021.

Breeze, T. D. et al. 2011. Pollination services in the UK: How important are honeybees? - Agr. Ecosyst. Environ. 142: 137-143.

Brosi, B. J. and Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. - PNAS 110: 13044-13048.

Calcagno, V. 2010. glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models. - J. Stat. Softw. 34: 1-29.

Cameron, R. W. F. et al. 2012. The domestic garden - Its contribution to urban green infrastructure. - Urban For. Urban Gree. 11: 129-137.

Cameron, S. A. et al. 2011. Patterns of widespread decline in North American bumble bees. PNAS 108: 662-667.

Cartar, R. V. and Real, L. A. Habitat structure and animal movement: the behaviour of bumble bees in uniform and random spatial resource distributions. - Oecologia 112: 430-434.

Essenberg, C. J. 2012. Explaining variation in the effect of floral density on pollinator visitation. - Am. Nat. 180: 153-166.

Fortel, L. et al. 2014. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. - PLoS One 9: e104679.

Frankie, G. W. et al. 2014. California Bees and Blooms: A Guide for Gardeners and Naturalists. Heyday.

Frankie, G. W. et al. 2009. Native bees are a rich natural resource in urban California gardens. Calif. Agr. 63: 113-120.

Frankie, G. W. et al. 2005. Ecological patterns of bees and their host ornamental flowers in two northern California cities. - J. Kansas Entomol. Soc. 78: 227-246.

Fridley, J. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. - Oecologia 132: 271-277.

Garbuzov, M. et al. 2015. Patch size has no effect on insect visitation rate per unit area in gardenscale flower patches. - Acta Oecol. 62: 53-57.

Gaston, K. J. et al. Urban domestic gardens (IV): the extent of the resource and its associated features. - Biodivers. Conserv. 13: 3327-3349.

Giannini, T. C. et al. 2012. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. - Ecol. Model. 244: 127-131.

Gibbs, J. 2010. Revision of the metallic species of Lasioglossum (Dialictus) in Canada (Hymenoptera, Halictidae, Halictini). - Zootaxa 2591: 1-382.

Goddard, M. A. et al. 2010. Scaling up from gardens: biodiversity conservation in urban environments. - Trends Ecol. Evol. 25: 90-98.

Goulson, D. 1999. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. - Perspect. Plant Ecol. 2: 185-209.

Goulson, D. 2000. Why Do Pollinators Visit Proportionally Fewer Flowers in Large Patches? Oikos 91: 485-492.

Greenleaf, S. S. et al. 2007. Bee foraging ranges and their relationships to body size. - Oecologia 153: 589-596.

Gross, C. L. and Mackay, D. 1998. Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). - Biol. Conserv. 86: 169-178.

Harrison, T. and Winfree, R. 2015. Urban drivers of plant-pollinator interactions. - Funct. Ecol. 29: 879-888.

Hines, H. M. and Hendrix, S. D. 2005. Bumble Bee (Hymenoptera: Apidae) Diversity and Abundance in Tallgrass Prairie Patches: Effects of Local and Landscape Floral Resources. Environ. Entomol. 34: 1477-1484.

Homer, C. G. et al. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. -Photogramm. Eng. Rem. S. 81: 345-354.

Hudewenz, A. and Klein, A.-M. 2015. Red mason bees cannot compete with honey bees for floral resources in a cage experiment. - Ecology and Evolution 5: 5049-5056.

Hülsmann, M. et al. 2015. Plant diversity and composition compensate for negative effects of urbanization on foraging bumble bees. - Apidologie 46: 760-770.

Hung, K.-L. J. et al. 2015. Effects of fragmentation on a distinctive coastal sage scrub bee fauna revealed through incidental captures by pitfall traps. - J. Insect Conserv. 19: 175-179.

Hunter, M. D. 2002. Landscape structure, habitat fragmentation, and the ecology of insects. Agr. Forest Entomol. 4: 159-166.

Jha, S. and Kremen, C. 2012. Resource diversity and landscape-level homogeneity drive native bee foraging. - PNAS 110: 555-558.

Klein, A.-M. et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274: 303-313.

Leong, M. et al. 2014. Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes. - PLoS One 9: e86357.

Loram, A. et al. 2007. Urban domestic gardens (X): the extent \& structure of the resource in five major cities. - Environ. Manage. 48: 808-824.

Martins, A. C. et al. 2013. Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. - Zoologia 30: 157176.

Mathieu, R. et al. 2007. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. - Landscape Urban Plan. 81: 179-192.

Matteson, K. C. et al. 2008. Bee richness and abundance in New York City urban gardens. - Ann. Entomol. Soc. Am. 101: 140-150.

Matteson, K. C. and Langellotto, G. A. 2010. Determinates of inner city butterfly and bee species richness. - Urban Ecosys. 13: 333-347.

Michener, C. D. 2007. Bees of the world. - John Hopkins University Press.
Moilanen, A. and Nieminen, M. 2002. Simple connectivity measures in spatial ecology. Ecology 83: 1131-1145.

Otoshi, M. D. et al. 2015. Local and landscape correlates of spider activity density and species richness in urban gardens. - Environ. Entomol. 44: 1043-1051.

Packer, L. 2015. Bees of Canada. Available at http://www.yorku.ca/bugsrus/resources/galleries/boc.

Paini, D. R. 2004. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. - Austral Ecol. 29: 399-407.

Pedro, S. R. M. and Camargo, J. M. 1991. Interactions on floral resources between the Africanized honey bee Apis mellifera and the native bee community (Hymenoptera: Apoidea) in a natural "cerrado" ecosystem in southeast Brazil. - Apidologie 22: 397-415.

Philpott, S. M. et al. 2014. Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. - Urban Ecosys. 17: 513-532.

Pleasants, J. M. and Zimmerman, M. 1979. Patchiness in the dispersion of nectar resources: Evidence for hot and cold spots. - Oecologia 41: 283-288.

Potts, S. G. et al. 2010. Global pollinator declines: trends, impacts and drivers. - Trends Ecol. Evol. 25: 345-353.

Ribas, C. R. et al. 2005. How large is large enough for insects? Forest fragmentation effects at three spatial scales. - Acta Oecol. 27: 31-41.

Roberts, R. B. 1973a. Bees of northwestern America: Halictus (Hymenoptera: Halictidae). Technical Bulletin 126. - Agricultural Experiment Station, Oregon State University, p. 23. Roberts, R. B. 1973b. Bees of northwestern America: Agapostemon (Hymenoptera: Halictidae). Technical Bulletin 125. - Agricultural Experiment Station, Oregon State University, p. 23.

Scheper, J. et al. 2015. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. - J. Appl. Ecol. 52: 1165-1175.

Schneider, S. S. and Mcnally, L. C. 1993. Spatial foraging patterns and colony energy status in the African honey bee, Apis mellifera scutellata. - J. Insect Behav. 2: 195-210.

Schweiger, O. et al. 2010. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. - Biol. Rev. 85: 777-795.

Sih, A. and Baltus, M.-S. 1987. Patch size, pollinator behavior and pollinator limitation in catnip.

- Ecology 68: 1679-1690.

Sowig, P. 1989. Effects of flowering plant's patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). - Oecologia 78: 550-558.

Steffan-Dewenter, I. et al. 2002. Scale-dependent effects of landscape context on three pollinator guilds. - Ecology 83: 1421-1432.

Tanner, C. J. et al. 2014. Urban ecology: advancing science and society. - Front. Ecol. Environ. 12: 574-581.

Team, R. D. C. 2014. R: A language and environment for statistical computing, reference index version 3.1.2. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org.

Thomson, J. D. 1981. Spatial and temporal components of resource assessment by flowerfeeding insects. - J. Anim. Ecol. 50: 49-59.

Threlfall, C. G. et al. 2015. The conservation value of urban green space habitats for Australian native bee communities. - Biol. Conserv. 187: 240-248.

Tilman, D. and Pacala, S. W. 1993. The maintenance of species richness in plant communities. In: Ricklefs, R. E. and Schluter, D. (eds.), Species Diversity in Ecological Communities. University of Chicago Press, pp. 13-25.

Tommasi, D. et al. 2004. Bee diversity and abundance in an urban setting. - Can. Entomol. 136: 851-869.

Tonietto, R. et al. 2011. A comparison of bee communities of Chicago green roofs, parks and prairies. - Landscape Urban Plan. 103: 102-108.

Torné-Noguera, A. et al. 2014. Determinants of spatial distribution in a bee community: Nesting resources, flower resources, and body size. - PLoS One 9: e97255.

Tuell, J. K. and Isaacs, R. 2009. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131: 93-98.

Van Heezik, Y. et al. Garden size, householder knowledge, and socio-economic status influence plant and bird diversity at the scale of individual gardens. - Ecosyst. 16: 1442-1454.

Veddeler, D. et al. 2006. Contrasting responses of bee communities to coffee flowering at different spatial scales. - Oikos 112: 594-601.

Williams, N. M. and Kremen, C. 2007. Resource distribution among habitats determines solitary bee offspring production in a mosaic landscape. - Ecol. Appl. 17: 910-921.

Winfree, R. et al. 2011. Valuing pollination services to agriculture. - Ecol. Econ. 71: 80-88.
Wojcik, V. A. et al. 2008. Seasonality in bees and their floral resource plants at a constructed urban bee habitat in Berkeley, California. - J. Kansas Entomol. Soc. 81: 15-28.

Wojcik, V. A. and Mcbride, J. R. 2012. Common factors influence bee foraging in urban and wildland landscapes. - Urban Ecosyst. 15: 581-598.

Zurbuchen, A. et al. 2010. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. - Biol. Conserv. 143: 669-676.

Explanatory Variables	Min. value	Max value
No. flowers (per 20 x 20 m plot)	789	38411
No. flower species (per 20 x 20 m plot)	5	43
No. flowers (mean per quadrat)	7.04	256.19
No. white flowers (mean per quadrat)	15.8	1065.68
No. flowers (max per quadrat)	130	7400
NNR for quadrats with ≥ 10 flowers	1.245	1.777
NNR for quadrats with ≥ 15 flowers	1.044	1.763
NNR for quadrats with ≥ 50 flowers	1.02	5.737
NNR for quadrats with ≥ 100 flowers	1.199	6.488
NNR for quadrats with ≥ 15 white flowers	0.987	1.628
NNR for quadrats with ≥ 2 species of flowers	1.007	3.279
Bare ground	9.62%	82.75%
Herbaceous vegetation	9.37%	85.25%
Mulch	0%	67.50%
Agricultural area within 2 km	0%	22.69%
Open area within 2 km	5.71%	29.01%
Natural area within 2 km	0%	61.20%
Urban area within 2 km	7.77%	64.76%

547 floral resources

Figure Legends

Figure 1. A map of the Central coast region of California showing the 18 urban garden sites in Monterey, Santa Clara, and Santa Cruz Counties, and land cover types in the study region and surrounding the garden study sites.

Figure 2. Correlations showing relationships between percent urban land cover and (a) number of bee individuals and (b) number of Apis mellifera individuals and the Nearest Neighbor Ratio (NNR) for quadrats with ≥ 15 flowers and (c) number of Apis mellifera for bees collected in urban gardens in the Central coast region of California. The lines show the best fit and the grey area cover confidence bands based on the generalized linear models. Smaller NNR values indicate stronger floral clustering.

Figures 3. Correlations showing relationships between mean number of flowers per $2 \times 2 \mathrm{~m}$ quadrat and (a) number of bee species and (b) bee diversity, and between the Nearest Neighbor Ratio (NNR) for quadrats with ≥ 15 flowers and (c) number of bee species and (d) bee diversity for bees collected in urban gardens in the Central coast region of California. The lines show the best fit and the grey area cover confidence bands based on the generalized linear models. Smaller NNR values indicate stronger floral clustering.

Figure 4. Correlations showing relationships between the number of honeybees (Apis mellifera) and a) bee species richness and b) bee diversity for bees collected in urban gardens in the Central coast region of California. The lines show the best fit and the grey area cover confidence bands based on the generalized linear models.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

