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Abstract

McDuff and Schlenk determined exactly when a four-dimensional
symplectic ellipsoid symplectically embeds into a symplectic ball. Sim-
ilarly, Frenkel and Müller determined exactly when a symplectic el-
lipsoid sympletically embeds into a symplectic cube. Symplectic em-
beddings of more complicated structures, however, remain mostly un-
explored. Recently, Timmons, Burkhart and Panescu proved novel
theorems concerning when a symplectic ellipsoid E(a, b) symplectically
embeds into a polydisc P (c, d); this thesis is a survey of these results.
We prove that there exists a constant depending only on d/c (here, d
is assumed greater than c) such that if b/a is greater than said con-
stant, then the only obstruction to symplectically embedding E(a, b)
into P (c, d) is the volume obstruction. We also completely determine
the symplectic embedding of E(a, 132 ) into P (c, d). Finally, we conjec-
ture exactly when an ellipsoid embeds into a scaling of P (1, b) for b
greater than or equal to 6, and conjecture about the set of (a, b) such
that the only obstruction to embedding E(1, a) into a scaling of P (1, b)
is the classical volume.
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1 Introduction

1.1 Background

This thesis includes a background and key sections of Symplectic embeddings
of 4-dimensional ellipsoids into polydiscs, [13], which I co-wrote with Max
Timmons and Madeleine Burkhart. This work was a result of our research
at the UC Berkeley Geometry, Topology and Operators Algebra Research
Training Group of Summer 2013. Here, a richer background on symplectic
embeddings is offered, whereas [13] includes in-depth proofs of some of the
more complicated theorems.

I would like to acknowledge Max Timmons and Madeleine Burkhart for
their contributions to this thesis. I would also like to thank our UC Berkeley
adviser, Daniel Cristofaro-Gardiner, for his helpful explanations, reference
suggestions, encouragement and patience. Additionally, I thank the NSF,
Michael Hutchings, and UC Berkeley for providing the opportunity to work
on symplectic embedding problems. I also thank my UC Santa Cruz adviser,
Debra Lewis, for assistance and support. Finally, I would like to express my
deep gratitude to my family and friends for always supporting and believing
in me.

1.2 Introduction to Symplectic Embeddings

To understand symplectic embeddings, it is important to note that although
symplectic manifolds locally look like the standard structure on Euclidean
space, the geometry is different from Riemannian geometry. The study of
the rigidity of symplectic embeddings was popularized by Gromov in 1985.
Gromov showed that volume preservation is necessary but insufficient for
symplectic embeddings:

Theorem 1.1. (Gromov’s nonsqueezing Theorem) There exists a symplectic
embedding of the ball B(a) into the cylinder Z(A) if and only if a ≤ A.

The volume of the cylinder Z(A) is infinite, so it is clear that symplectic
embeddings are more rigid than volume preserving embeddings. Work by
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Gromov [6], McDuff-Polterovich [10] and Biran [2] suggests that this sym-
plectic rigidity disappears for some values of a, although the precise barrier
between symplectic and volume preserving embeddings is unknown.

Suppose X is a 2n-dimensional smooth manifold and ω is a 2-form that
is closed and nondegenerate. We say (X,ω) is a symplectic 2n-manifold
and call ω a symplectic form on X. If (X0, ω0) and (X1, ω1) are symplectic
2n-manifolds then a symplectic embedding of (X0, ω0) into (X1, ω1), denoted

(X0, ω0)
s
↪→ (X1, ω1), is a smooth embedding ϕ : M0 →M1 such that ϕ∗ω1 =

ω0. As discussed above, symplectic embeddings are volume preserving, thus

it is necessary that Vol(X0) ≤ Vol(X1) when (X0, ω0)
s
↪→ (X1, ω1).

It is interesting to ask when one symplectic manifold embeds into an-
other. For example, define the (open) four-dimensional symplectic ellipsoid

E(a, b) =

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2a
+
π|z2|2

b
< 1

}
, (1.1)

and define the (open) symplectic ball B(a) := E(a, a). These inherit sym-
plectic forms by restricting the standard form ω =

∑2
k=1 dxkdyk on R4 = C2.

In [11], McDuff and Schlenk determined exactly when a four-dimensional
symplectic ellipsoid E(a, b) embeds symplectically into a symplectic ball,
and found that if b

a is small, then the answer involves an “infinite staircase”

determined by the odd index Fibonacci numbers, while if b
a is large then all

obstructions vanish except for the volume obstruction.
Additionally, define the (open) four-dimensional polydisc

P (a, b) =
{

(z1, z2) ∈ C2
∣∣ π|z1|2 < a, π|z2|2 < b

}
, (1.2)

where a, b ≥ 1 are real numbers and the symplectic form is again given by re-
stricting the standard symplectic form on R4. Frenkel and Müller determined
in [5] exactly when a four-dimensional symplectic ellipsoid symplectically
embeds into a cube C(a) := P (a, a) and found that part of the expression
involves the Pell numbers. Cristofaro-Gardiner and Kleinman [4] studied
embeddings of four-dimensional ellipsoids into scalings of E(1, 32) and also
found that part of the answer involves an infinite staircase determined by a
recursive sequence.

Here we study symplectic embeddings of an open four-dimensional sym-
plectic ellipsoid E(a, b) into an open four-dimensional symplectic polydisc
P (c, d). By scaling, we can encode this embedding question as the function

d(a, b) := inf{λ|E(1, a)
s
↪→ P (λ, bλ)}, (1.3)

where a and b are real numbers that are both greater than or equal to 1.

The function d(a, b) always has a lower bound,

√
a

2b
, equal to the volume

obstruction.
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1.3 Introduction to ECH Capacities

Any symplectic four-manifold has an associated sequence of nonnegative
(possibly infinite) real numbers (indexed starting at 0) called the embedded
contact homology (ECH) capacities, a concept developed by Michael Hutch-
ings [7]. These ECH capacities obstruct symplectic embeddings. We only
briefly discuss ECH capacities here; see [7] for a full survey.

The ECH capacities of a four-dimensional ellipsoid are equal to the se-
quence N(a, b) of all non-negative integer linear combinations of a and b,
arranged with repetitions in non-decreasing order. For example,

N(1, 1) = (0, 1, 1, 2, 2, 2, 3, 3, 3, 3, ...).

The ECH capacities of a four-dimensional polydisc are equal to M(a, b), the
sequence whose kth term is

min{ma+ nb|(m+ 1)(n+ 1) ≥ k + 1}

where k,m, n ∈ Z≥0. For example,

M(1, 1) = (0, 1, 2, 2, 3, 3, 4, 4, 4, 5, ...).

Write N(a, b) ≤M(c, d) if each term in the sequence N(a, b) is less than or
equal to the corresponding term in M(c, d). Frenkel and Müller show that
embeddings of an ellipsoid into a polydisc are completely determined by the
sequences M and N :

Theorem 1.2. (Frenkel-Müller [5]) There is a symplectic embedding E(a, b)
s
↪→

P (c, d) if and only if N(a, b) ≤M(c, d).

Theorem 1.2 is equivalent to the statement that the ECH capacities give
sharp obstructions to embeddings of an ellipsoid into a polydisc.

This theorem implies that we can rewrite (1.3) as

d(a, b) = sup

{
Nk(1, a)

Mk(1, b)
: k ∈ N

}
, (1.4)

which helps with the construction and analysis of the graph of d(a, b).

1.4 Statement of Results

Our first theorem states that for fixed b, if a is sufficiently large then all
embedding obstructions vanish aside from the volume obstruction:

Theorem 1.3. If a ≥ 9(b+ 1)2

2b
, then d(a, b) =

√
a

2b
.
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This is an analogue of a result of Buse-Hind [3] concerning symplectic
embeddings of one symplectic ellipsoid into another.

From the previously mentioned work of McDuff-Schlenk, Frenkel-Müller,
and Cristofaro-Gardiner-Kleinman, one expects that if a is small then the
function d(a, b) should be more rich. Our results suggest that this is indeed

the case. For example, we completely determine the graph of d(a,
13

2
) (see

Figure 1):

Theorem 1.4. For b =
13

2
, d(a, b) ≥

√
a

13
, i.e. the volume obstruction,

and is equal to this lower bound for all a except on the following intervals:

(i) d(a,
13

2
) = 1 for all a ∈

[
1, 252

]
(ii) For 0 ≤ k ≤ 4, k ∈ Z:

d(a, b) =


2a

25 + 2k
a ∈ [αk, 13 + 2k],

26 + 4k

25 + 2k
a ∈ [13 + 2k, βk],

where α0 = 25/2, α1 = 351/25, α2 = 841/52, α3 = 961/52, α4 = 1089/52,
β0 = 351/25, β1 = 1300/81, β2 = 15028/841, β3 = 18772/961, and β4 =
2548/121.

Interestingly, the graph of d(a, 132 ) has only finitely many nonsmooth
points, in contrast to the infinite staircases in [11, 5, 4]. This is exactly why

b =
13

2
, determining finitely many steps is a more approachable problem than

determining infinitely many, and appears to be the case for many values of
b. For example, we conjecture what the function d(a, b) is for all b ≥ 6, see
conjecture 5.3.

2 Proof of Theorem 1.3

2.1 Weight sequences and the # operation

We begin by describing the machinery that will be used to prove Theorem
1.3.

Let a2 be a nonnegative rational number. In [9], McDuff shows that
there is a finite sequence of numbers

W (1, a2) = (a1, ..., an),

called the (normalized) weight sequence for a2, such that E(1, a2) embeds
into a symplectic ellipsoid if and only if the disjoint union tB(W ) := tB(ai)
embeds into that ellipsoid.
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Figure 1: The graph of d(a, 132 ). The red line represents the volume obstruc-
tion.

To describe the weight sequence, let

W (a2, 1) = (X×`00 , X×`11 , ..., X×`kk ) (2.1)

where X0 > X1 > ... > Xk and `k ≥ 2. The `i are the multiplicities of the
entries Xi and come from the continued fraction expansion

a2 = `0 +
1

`1 +
1

`2 + ...
1

`k

:= [`0; `1, ..., `k].

The entries of 2.1 are defined as follows:

X−1 := a2, X0 = 1, Xi+1 = Xi−1 − `iXi, i ≥ 0.

Important properties of the weight sequence include that

Σia
2
i = a2 (2.2)

and

Σiai = a+ 1− 1

q
(2.3)

where for all i, ai ≤ 1 and a =
p

q
.

We will also make use of a helpful operation, #, as in [9]. Suppose s1
and s2 are sequences indexed with k ∈ Z, starting at 0. Then,
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(s1#s2)k = supi+j=k(s1)i + (s2)j .

A useful application of # is the following lemma:

Lemma 2.1. (McDuff [9]) For all a, b > 0, we have N(a, a)#N(a, b) =
N(a, a + b). More generally, for all ` ≥ 1, we have (#`N(a, a))#N(a, b) =
N(a, b+ `a).

Note that the operation #` is equivalent to applying # ` times. This
lemma together with the weight sequence and scaling implies that

N(1, a2) = N(a1, a1)#...#N(an, an). (2.4)

Similar to McDuff [9], this machinery allows us to reduce Theorem 1.3 to a
ball-packing problem.

2.2 Proof of Theorem 1.3

We begin by noting that the ECH capacities for B(a) are

N(a, a) = (0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, ...).

where the terms Nk(a, a) of this sequence are of the form na and for each n
there are n+ l entries occurring at

1

2
(n2 + n) ≤ k ≤ 1

2
(n2 + 3n). (2.5)

Similarly, for the sequence
a√
2b
M(1, b), each term

a√
2b
Mk(1, b) is of the

form n
a√
2b

where

k ≤ n2

4b
+

(1 + b)n

2b
+
b2 − 2b+ 1

4b
. (2.6)

By scaling and continuity, we can study d(a2, b) with a2 rational. So,
we can prove that the volume obstruction is the only obstruction when a ≥
3(b+ 1)√

2b
by showing that

N(1, a2) ≤ a√
2b
M(1, b) (2.7)

for said a values.
By 2.5 and 2.6, it is sufficient to show that

Σiniai ≤
a√
2b
n (2.8)
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whenever n1, .., nm, n are nonnegative integers such that

Σi(n
2
i + ni) ≤ 2(

n2

4b
+

(1 + b)n

2b
+
b2 − 2b+ 1

4b
). (2.9)

We do so by considering the following cases:

Case 1. Σi(n
2
i ) ≤

n2

2b
. In this case, the Cauchy-Schwartz Inequality along

with 2.2 implies 2.8.

Case 2. Σi(n
2
i ) >

n2

2b
. This case along with 2.9 implies

Σiniai ≤ Σini ≤
(1 + b)n

b
+
b2 − 2b+ 1

2b
.

So, we need

(1 + b)n

b
+
b2 − 2b+ 1

2b
≤ a√

2b
n.

It follows that

a ≥ b+ 1√
2b

(2 +
b+ 1

n
). (2.10)

Now let n = b+ 1. We see that in this case 2.6 is equivalent to

k ≤ b+ 1 +
1

4b
.

where Nk(1, a2) ≤ a√
2b
Mk(1, b) for all such k values. As such, we can

set n = b+ 1 to 2.10 to get

a ≥ 3(b+ 1)√
2b

, (2.11)

hence the desired result.

Remark 2.2. We allow n = b+1 in the statement of Theorem 1.4. However,

if we show Nk(1, a2) ≤ a√
2b
Mk(1, b) for all k ≤ d2

4b
+

(1 + b)d

2b
+
b2 − 2b+ 1

4b
for some other value of n, then we can use this n in 2.10 to achieve a sharper
bound for a.

3 Proof of Theorem 1.4 Part I

This section proves parts (i) and (ii) of Theorem 1.4. Specifically, we prove
the exact intervals in which the graph of d(a, 132 ) is linear. We begin by iden-
tifying the nondifferentiable points of d(a, 132 ). These points were estimated
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using the graphing features of Matlab and then confirmed by using the Mat-
lab code shown in the appendix. Here, we use Ehrhart polynomial theory
to prove the existence of these nondifferentiable points. Using monotonicity
and subscaling arguments (see Lemmas 3.3 and 3.4), we prove the existence
of the linear steps of the graph of d.

3.1 Nondifferentiable points and Ehrhart polynomials

We first compute the values of d at certain points. These will eventually be
the points a where d(a, 132 ) is not differentiable.

Proposition 3.1. We have:

d

(
1,

13

2

)
= 1, d

(
25

2
,
13

2

)
= 1, d

(
13,

13

2

)
=

26

25
,

d

(
351

25
,
13

2

)
=

26

25
, d

(
15,

13

2

)
=

10

9
, d

(
1300

81
,
13

2

)
=

10

9
,

d

(
841

52
,
13

2

)
=

29

26
, d

(
17,

13

2

)
=

34

29
, d

(
15028

841

)
=

34

29
,

d

(
961

52
,
13

2

)
=

31

26
, d

(
19,

13

2

)
=

38

31
, d

(
18772

961
,
13

2

)
=

38

31
,

d

(
1089

52
,
13

2

)
=

33

26
, d

(
21,

13

2

)
=

42

33
, and d

(
2548

121
,
13

2

)
=

42

33
.

To prove the proposition, the main difficulty comes from the fact that
that applying Theorem 1.2 in principle requires checking infinitely many
ECH capacities. Our strategy for overcoming this difficulty is to study the
growth rate of the terms in the sequences M and N . We will find that in
every case needed to prove Proposition 3.1, one can bound these growth
rates to conclude that only finitely many terms in the sequences need to be
checked. This is then easily done by computer. The details are as follows:

Proof. Step 1. For the sequence N(a, b), let k(a, b, t) be the largest k such
that Nk(a, b) ≤ t. Similarly, for the sequence M(c, d), let l(c, d, t) be the

largest l such that Ml(c, d) ≤ t. To show that E(a, b)
s
↪→ P (c, d), by Theo-

rem 1.2, we just have to show that for all t, we have k(a, b, t) ≥ l(c, d, t).
Step 2. We can estimate k(a, b, t) by applying the following proposition:

Proposition 3.2. If a, b, r, and t are all positive integers, then k(ar ,
b
r , t) =

1

2ab
(tr)2 +

1

2
(tr)

(
1

a
+

1

b
+

1

ab

)
+

1

4

(
1 +

1

a
+

1

b

)
+

1

12

(
a

b
+
b

a
+

1

ab

)
+

1

a

a−1∑
j=1

ξ
j(−tr)
a

(1− ξjba )(1− ξja)
+

1

b

b−1∑
l=1

ξ
l(−tr)
b

(1− ξlab )(1− ξlb)
,

(3.1)
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where ξd = e
2πi
d .

Proof. The number of terms in N(ar ,
b
r ) that are less than t is the same as

the number of lattice points (m,n) in the triangle bounded by the positive
x and y axes and the line xa

r + y b
r ≤ t. For integral t, this number can be

computed by applying the theory of “Ehrhart polynomials”. Proposition 3.2
follows by applying [1, Thm. 2.10].

Motivated by the definition of d, we will be most interested in this propo-
sition in the case where a = r. Note that by the last two terms of the formula
in Proposition 3.2, k(ar ,

b
r , t) is a periodic polynomial with period ab.

We also need an argument to account for the fact that Proposition 3.2
is only for integer t, whereas the argument in step 1 involves real t. To
account for this, we use an asymptotic argument. Specifically, for E(1, ar ) ,
a, r ∈ Z≥1, we bound the right hand side of (3.1) from below by taking the
floor function of t. It is convenient for our argument to further bound this
expression from below by

c1
r2

(rt− 1)2 +
c2
r

(rt− 1) + c3. (3.2)

where the ci are the coefficients of the right hand side of (3.1) that do not
involve t or r.

This is the lower bound that we will use for k(1, ar , t).
Step 3. To get an upper bound l(c, d, t) for M(c, d), recall that Ml(c, d) =

min{cm+ dn : (m+ 1)(n+ 1) ≥ l+ 1}. For cm+ dn = t, we solve for m in
terms of n and find: (

t− dn
c

+ 1

)
(n+ 1)− 1 ≥ l.

Considering m,n ∈ R, we can take the derivative of the left side of the in-
equality with respect to n and then set the expression equal to 0 to maximize
it. We do the same with m to obtain:(

t

2d
+

c

2d
+

1

2

)(
t

2c
+

d

2c
+

1

2

)
− 1 ≥ l.

Simplifying, we find that an upper bound for l is:

l(c, d, t) =
t2

4cd
+

(c+ d)t

2cd
+

(c− d)2

4cd
. (3.3)

Our strategy now is to check for each point in Proposition 3.1 that we
have k(a, b, t) ≥ l(c, d, t) asymptotically in t for the corresponding (a, b, c, d).
From there, we can check that for a sufficient number of terms, N(1, a) ≤
M(λ, λb).
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Step 4. Since the rest of the proof amounts to computation, it is best
summarized by the chart below. In the chart, kt2 and lt2 denote the coef-
ficients of the quadratic terms in the upper and lower bounds from steps
2 and 3, while kt and lt denote the corresponding coefficients of the linear
terms.

The t column gives the sufficient number of t terms to check up to before
the asymptotic bounds from the previous three steps are enough. Note that
if the t2 coefficients in any row are equal, then the linear coefficients are
used to make an asymptotic argument; this explains the appearance of the
“N/A”s in the table. It is simple to check by computer that the relevant
N and M sequences in each row satisfy N ≤ M once one knows that the
problem only has to be checked up to the term in the t column. Code for
this is contained in A.

The ECH obstruction column gives an ECH capacity that shows that
one cannot shrink λ further, i.e. the claimed embeddings are actually sharp.

E(1, a)
s
↪→ P (λ, λb) kt2 lt2 kt lt t ECH obstruction

E(1, 252 )
s
↪→ P (1, 132 ) 1

25
1
26 N/A N/A 51 1

E(1, 13)
s
↪→ P (2625 ,

169
25 ) 1

26
625

17576 N/A N/A 33 13

E(1, 35125 )
s
↪→ P (2625 ,

169
25 ) 25

702
625

17576 N/A N/A 522 13

E(1, 15)
s
↪→ P (109 ,

65
9 ) 1

30
81

2600 N/A N/A 29 15

E(1, 130081 )
s
↪→ P (109 ,

65
9 ) 81

2600
81

2600
691
1300

27
52 272 15

E(1, 84152 )
s
↪→ P (2926 ,

29
4 ) 26

841
26
841

447
841

15
29 122 17

E(1, 17)
s
↪→ P (3429 ,

221
29 ) 1

34
841

30056 N/A N/A 27 17

E(1, 15028841 )
s
↪→ P (3429 ,

221
29 ) 841

30056
841

30056
7935
15028

435
884 32 17

E(1, 96152 )
s
↪→ P (3126 ,

31
4 ) 26

961
26
961

507
961

15
31 23 19

E(1, 19)
s
↪→ P (3831 ,

247
31 ) 1

38
961

37544 N/A N/A 7 19

E(1, 18772961 )
s
↪→ P (3831 ,

247
31 ) 961

37544
961

37544
759
1444

465
988 28 19

E(1, 108952 )
s
↪→ P (3326 ,

33
4 ) 26

1089
26

1089
571
1089

15
33 14 21

E(1, 21)
s
↪→ P (4233 ,

273
33 ) 1

42
121
5096 N/A N/A 26 21

E(1, 2548121 )
s
↪→ P (4233 ,

273
33 ) 121

5096
121
5096

1335
2548

165
364 41 21

Table 3.1

3.2 The linear steps

Given the computations from the previous section, the computation of d(a, 132 )
for all the “linear steps”, i.e. those portions of the graph of d for which d is
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linear, is straightforward. Indeed, we have the following two lemmas:

Lemma 3.3. For a fixed b, d(a, b) is monotonically non-decreasing.

Proof. This follows from the fact that E(1, a)
s
↪→ E(1, a

′
) if a ≤ a′

.

Lemma 3.4. d(λa, b) ≤ λd(a, b). (subscaling)

Proof. This follows from the fact that E(1, λa)
s
↪→ E(λ, λa) for λ ≥ 1.

By monotonicity, we know that d(a, 132 ) is constant on the intervals:

a ∈
[
1,

25

2

]
,

[
13,

351

25

]
,

[
15,

1300

81

]
,

[
17,

15028

841

]
,

[
19,

18772

961

]
,

[
21,

2548

121

]
.

We now explain why for 0 ≤ k ≤ 4, k ∈ Z,

d(a, 132 ) =
2a

25 + 2k
a ∈ [αk, 13 + 2k],

where α0 =
25

2
, α1 =

351

25
, α2 =

841

52
, α3 =

961

52
, and α4 =

1089

52
.

Given the critical points we have determined, along with the subscal-

ing lemma, we have
2a

25 + 2k
as an upper bound for d(a, 132 ) on the above

intervals.
We also know that:

d(a, 132 ) = sup

{
Nx(1, a)

Mx(1, 132 )
: x ∈ N

}
≥ Nl(1, a)

Ml(1,
13
2 )

for any l.

Here is a representative example of our method:

Example 3.5. To illustrate how this can give us a suitable lower bound,
consider the case where x = 13:

sup

{
Nx(1, a)

Mx(1, 132 )
: x ∈ N

}
≥ N13(1, a)

M13(1,
13
2 )

=
2a

25

for a ∈
[
25
2 , 13

]
.

This lower bound equals the upper bound given by Lemma 3.4, so we
have proven Theorem 1.4 for a ∈ [252 , 13].

The general method is similar: given a ∈ [αk, 13 + 2k], we can find an l
such that:

Nl(1, a)

Ml(1,
13
2 )

=
2a

25 + 2k
.

Such obstructing values of l are given in the following table:

12



k
2

25 + 2k
l

0 2
25 13

1 2
27 15

2 2
29 17

3 2
31 19

4 2
33 21

Table 3.2

Given a ∈ [αk, 13 + 2k] for each integer k ∈ [0, 4], we have found that the

upper and lower bounds of d(a, 132 ) equal
2a

25 + 2k
. Thus, we have proven

our claim for these intervals.

4 Proof of Theorem 1.4 Parts II and III

To finish the proof of Theorem 1.4, we must prove that all other, nonlinear
segments of the graph of d are equal to the volume obstruction. The sec-
ond part of the proof of Theorem 1.4 involves complicated machinery that
will not be discussed here. The proof adapts ideas from [11] and [9] in a
purely combinatorial way and involves the use of the Cremona transform
and reducing the proof to a ball packing problem, as in the proof of Theo-
rem 1.3. Please refer to [13] for the in-depth proofs that show that d(a, 132 )

equals

√
a

13
, i.e. the volume obstruction, for the following intervals of a:

[130081 ,
841
52 ], [15028841 ,

961
52 ], [18772961 ,

1089
52 ], [2548121 , 27], and [27,∞).

5 Conjectures

We now present some conjectures concerning exactly when an ellipsoid em-
beds into a polydisc.

5.1 Extensions of Theorem 1.3

To consider an interesting refinement of Theorem 1.3, define V (b) = inf{A :
d(a, b) =

√
a
2b for a ≥ A}. Theorem 1.3 implies V (b) ≤ 9

2(b+ 2 + 1
b ).

Proposition 5.1. For b ≥ 1

V (b) ≥ 2b

 2 bbc+ 2
⌈√

2b+ {b}
⌉
− 1

b+ bbc+
⌈√

2b+ {b}
⌉
− 1

2

where {b} = b− bbc.
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Proof.

d(2 bbc+2
⌈√

2b+ {b}
⌉
−1, b) ≥

N2bbc+2d
√
2b+{b}e−1(1, 2 bbc+ 2

⌈√
2b+ {b}

⌉
− 1)

M2bbc+2d
√
2b+{b}e−1(1, b)

=
2 bbc+ 2

⌈√
2b+ {b}

⌉
− 1

b+ bbc+
⌈√

2b+ {b}
⌉
− 1

>

√√√√2 bbc+ 2
⌈√

2b+ {b}
⌉
− 1

2b

This implies

V (b) ≥ 2b

 2 bbc+ 2
⌈√

2b+ {b}
⌉
− 1

b+ bbc+
⌈√

2b+ {b}
⌉
− 1

2

.

Experimental evidence seems to suggest that for b > 1 this bound is
sharp.

Conjecture 5.2. For b > 1

V (b) = 2b

 2 bbc+ 2
⌈√

2b+ {b}
⌉
− 1

b+ bbc+
⌈√

2b+ {b}
⌉
− 1

2

.

5.2 Generalizations of Theorem 1.2

The methods used to compute the graph of d(a, 6.5) should extend for the
most part to any b. In light of those techniques, experimental evidence, and
a conjecture regarding d(a, b) for b an integer by David Frenkel and Felix
Schlenk relayed to us by Daniel Cristofaro-Gardiner, we offer a conjecture
regarding the graph of d(a, b) for b ≥ 6, see Figure 2.

Conjecture 5.3. For b ≥ 6, d(a, b) =
√

a
2b except on the following intervals:

(i) d(a, b) = 1 for all a ∈ [1, b+ bbc]
(ii) For 0 ≤ k ≤

√
2b+ {b}, k ∈ Z:

d(a, b) =


a

b+ bbc+ k
a ∈ [αk, 2(bbc+ k) + 1],

2(bbc+ k) + 1

b+ bbc+ k
a ∈ [2(bbc+ k) + 1, βk],

14



Figure 2: Approximate plot of the graph of d(a, b)
.

where α0 = b + bbc , α1 = β0 = (b+bbc+1)(2bbc+1)
b+bbc , αk = (b+bbc+k)2

2b for k ≥

2, andβk = 2b
(
2(bbc+k)+1)
b+bbc+k

)2
for k ≥ 1.

For integers m, if b ∈ [m − m
(m+1)2

,m + 1
2+m ] then let b = m + ε. It

follows that

d(a, b) =


ma+ 1

2m2 + (2 + ε)m+ ε
a ∈ [α∗, 2m+ 4],

m(2m+ 4) + 1

2m2 + (2 + ε)m+ ε
a ∈ [2m+ 4, β∗],

where α∗ = 1
2(2m3+2m2ε)

(8m3 + 4m2 + 8m2ε+ 4m3ε+ε2 + 2mε2 + b2ε2− (1 +

m)(2m+ε)
√
−4m2 + 8m3 + 4m4 − 4mε+ 8m2ε+ 4m3ε+ ε2 + 2mε2 +m2ε2)

and β∗ = 2(ε+m+8mε+8m2+20m2ε+16m3ε+16m4+4m4ε+4m5)
(1+m)2(2m+ε)2

.

We note that Conjecture 5.3 implies Conjecture 5.2 for b ≥ 6. Further-
more, we prove that the conjecture is a lower bound for d(a, b).

Proposition 5.4. For b ≥ 6, d(a, b) ≥
√

a
2b and

(i) d(a, b) ≥ 1 for all a ∈ [1, b+ bbc]
(ii) For 0 ≤ k ≤

√
2b+ {b}, k ∈ Z:
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d(a, b) ≥


a

b+ bbc+ k
a ∈ [αk, 2(bbc+ k) + 1],

2(bbc+ k) + 1

b+ bbc+ k
a ∈ [2(bbc+ k) + 1, βk],

where α0 = b + bbc , α1 = β0 = (b+bbc+1)(2bbc+1)
b+bbc , αk = (b+bbc+k)2

2b for k ≥

2, βk = 2b
(
2(bbc+k)+1)
b+bbc+k

)2
for k ≥ 1.

For integers m, if b ∈ [m − m
(m+1)2

,m + 1
2+m ] then let b = m + ε. It

follows that

d(a, b) ≥


ma+ 1

2m2 + (2 + ε)m+ ε
a ∈ [α∗, 2m+ 4],

m(2m+ 4) + 1

2m2 + (2 + ε)m+ ε
a ∈ [2m+ 4, β∗],

where α∗ = 1
2(2m3+2m2ε)

(8m3 + 4m2 + 8m2ε+ 4m3ε+ε2 + 2mε2 + b2ε2− (1 +

m)(2m+ε)
√
−4m2 + 8m3 + 4m4 − 4mε+ 8m2ε+ 4m3ε+ ε2 + 2mε2 +m2ε2)

and β∗ = 2(ε+m+8mε+8m2+20m2ε+16m3ε+16m4+4m4ε+4m5)
(1+m)2(2m+ε)2

.

Proof. We know that d(a, b) ≥
√

a
2b because symplectic embeddings are

volume preserving. We also have

d(a, b) ≥ N1(1, a)

M1(a, b)
=

1

1
= 1.

Additionally, for k ∈ Z, 0 ≤ k <
√

2b+ {b}, a ∈ [2(bbc+ k), 2(bbc+ k) + 1]

d(a, b) ≥
N2(bbc+k)+1(1, a)

M2(bbc+k)+1(1, b)
=

a

b+ bbc+ k

≥ 1 for a ∈ [b+ bbc , 2 bbc+ 1], k = 0

≥ 2 bbc+ 1

b+ bbc
for a ∈ [

(b+ bbc+ 1)(2 bbc+ 1)

b+ bbc
, 2 bbc+ 3], k = 1

≥
√

a

2b
for a ∈ [αk, 2(bbc+ k) + 1], k ≥ 2.

We also have for a ∈ [2(bbc+ k) + 1,∞)

d(a, b) ≥
N2(bbc+k)+1(1, a)

M2(bbc+k)+1(1, b)
=

2(bbc+ k) + 1

b+ bbc+ k
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≥
√

a

2b
for a ∈ [2(bbc+ k) + 1, βk].

Furthermore, if b ∈ [m − m
(m+1)2

,m + 1
2+m ] for some m ∈ Z and a ∈ [2m +

4− 1
m , 2m+ 4]

d(a, b) ≥
N(m+1)3(1, a)

M(m+1)3(1, b)
=

ma+ 1

2m2 + (2 + ε)m+ ε

≥
√

a

2b
for a ∈ [α∗, 2m+ 4].

We also have for a ∈ [2m+ 4mβ∗]

d(a, b) ≥
N(m+1)3(1, a)

M(m+1)3(1, b)
=

m(2m+ 4) + 1

2m2 + (2 + ε)m+ ε

≥
√

a

2b
for a ∈ [2m+ 4, β∗].

This completes the proof.
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A Appendix: Code that checks through terms of
N and M

The following is Matlab code that allows us to check whether N(1, b) ≤
M(c, d) up through N(1, a) ≤ x (note that for the function Membed, d ≤ c):

function m=embed(b,c,d,x)

l=length(Nembed(x,b));

y=zeros(1,l); w=Nembed(x,b); t=Membed(l,c,d);

for i=1:l

if w(i)<=(t(i)+10^-10)

y(i)=1;

else

m=0;

break

end

end

m=min(y);

function y=Nembed(x,b);

y=zeros(1,x+2);

for i=1:x+2

y(i)=floor((x+b-(i-1))/b);

end

M=sum(y);

z=zeros(1,(x+1)^2);

for i=1:x+1

for j=1:x+1

z(i+(x+1)*(j-1))=i-1+(j-1)*b;

end

end

l=sort(z);

y=zeros(1,M);

for i=1:M

y(i)=l(i);

end

function q=Membed(N,c,d)

q=zeros(1,N);

for k=0:N-1

w=zeros(1,ceil(sqrt(k+1)-1));

for i=0:(ceil(sqrt(k+1)-1))

w(i+1)=c*i+d*(ceil((k+1)/(i+1))-1);
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end

q(k+1)=min(w);

end
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