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1 Introduction

The vorticity field of an incompressible, homogenous fluid is frozen, meaning that the topo-
logical structure of the field is preserved by fluid motion. Disregarding the possibility of
singularities or discontinuities and assuming the absence of external forces, we may use
topological invariants as fluid flow invariants. The goal of this paper is to analyze the effects
of topological structure on the energy dissipation of a fluid flow field. We will show that for
a nontrivial topology, the energy of a vorticity field tends to a positive minimum which can
be estimated through the application of topological invariants.

We consider the total energy of a viscous fluid in two components: the energy of the
velocity field, called kinetic energy, and the energy of the vorticity field. We first prove
that the energy of the vorticity field is monotonically decreasing as it is converted to kinetic
energy, and then that the total energy is monotonically decreasing as kinetic energy is lost
due to viscosity (Moffatt, [11]).

In section 3 we introduce several knot invariants, particularly the Gauss and Călugăreanu-
White linking numbers, and discuss their relationship to the helicity of a vortex tube, a known
invariant of fluid motion which provides a lower bound for the energy of the vorticity field
(Moffatt, [10]). Calculation of the Gauss and Călugăreanu-White linking numbers depends
upon the assignment of a value which may be either positive or negative to each link or knot
crossing. The sum of a positive and negative crossing will then cancel out, sometimes yielding
an overall sum of zero for a nontrivial structure. Thus the helicity of a nontrivial vortex tube
may be zero, and so helicity is insufficient as a lower bound. In the following section, we
refine the lower bound by instead using asymptotic crossing number as our invariant. Unlike
the Gauss and Călugăreanu-White linking numbers, the asymptotic crossing number takes
the absolute value at each crossing and hence sums to a positive value for every nontrivial
knot (Freedman & He, [5]). We will show that the asymptotic crossing number also provides
a lower bound for the energy of the vorticity field, which therefore tends to a positive limit
because it is both monotonically decreasing and bounded below.

Having proved the existence of a lower limit, we attempt to attain the energy minimum
by adopting a non-orthogonal coordinate system. Transformation and manipulation of the
energy integral of a knotted, uniform vortex tube of circular cross-section results in an
energy equation based purely on tube length and several fluid and topological invariants. If
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Figure 1: Deformation of a knotted vortex tube. The energy of a trefoil knot of uniform circular cross-

section is minimized when L ≈ V 1/3 and A ≈ V 2/3. Source: Moffatt [10].

a knotted vortex tube does not satisfy the additional constraints of uniformity and circular
cross-section, the equation provides an upper bound for the energy. We conclude that for
a typical knotted vortex tube, tube length decreases as energy dissipates. Because volume
is preserved, the cross-sectional area must increase to compensate for loss of length, as
depicted by the trefoil knot in Figure 1. However, conservation of topology means that the
tube cannot pass through itself, and it is for this reason that the lower bound attained in
the early sections of the paper exists. Furthermore, in some cases a vortex tube may be so
strongly knotted that the energy is minimized with an increase in length and the associated
decrease in cross-sectional area (Chui & Moffatt, [2]).

In addition to the constraints of incompressibility and homogeneity, we presume a smooth
velocity field. In the absence of smoothness, discontinuities may form which allow for alter-
ations to the vortex topology. For a more detailed explanation of these discontinuities, see
Moffatt [10].

2 The Movement of Fluid Energies

We consider an incompressible fluid of uniform density ρ with smooth velocity field v.

Definition 2.1. The vorticity ω of a fluid flow field is the curl of the velocity:

ω = ∇× v.

Vorticity is a function of position x and time t, so we write ω = ω(x, t).

The vorticity vector at a point x is roughly twice the mean angular velocity vector at
x with respect to the center of mass of a small neighborhood of particles, and hence is a
measure of local “spin”, oriented according to the right-hand rule. A fluid is said to be
irrotational where the vorticity is 0. A vortex line is a curve that is everywhere tangent to
the vorticity vector, and a vortex tube is a region of isolated vorticity; more precisely, it
is the set of vortex lines passing through a closed curve C outside of which the vorticity is
locally 0.
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Definition 2.2. The circulation (strength) Φ of a vortex tube is the line integral of the
velocity field around the boundary curve C:

Φ =

∫
C

v · dl.

Equivalently (by Stokes’ theorem), the circulation is the flux of the vorticity over the cross-
sectional surface S bounded by C:

Φ =

∫∫
S

ω · dS.

Unlike vorticity, circulation is a uniform scalar throughout a vortex tube, which means it
can be calculated using any cross-sectional surface.

Figure 2: The relative orientations of circulation and vorticity are determined by the right-hand rule.

Source: thefreedictionary.com

Viscous fluid motion is governed by the Navier-Stokes equations. For incompressible,
homogenous fluids that are not acted upon by external forces, the equations that express
conservation of matter and of momentum reduce to, respectively,

∇ · v = 0 (1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ F + µ∇2v (2)

where p is a pressure scalar, µ is the viscosity (friction between fluid particles), and
F = (∇× ω) × ω is the force exerted by the vorticity field.

With these conditions, circulation is conserved. Not only is it uniform for a given vortex
tube; it is constant over time. Furthermore, because vorticity is solenoidal (∇ ·ω = 0), it is
frozen under the Navier-Stokes equations, meaning that it satisfies the frozen field equation

∂ω

∂t
= ∇× (v × ω) (3)

and the volume and field topology are preserved by the fluid flow; however, within the
constraints of that topology certain deformations may occur. Stretching of a vortex tube,
when the area of every cross-sectional surface decreases while the tube length increases,
is typically associated with an energy cascade that causes the magnitude of the vorticity
to increase. In the presence of viscosity and no external forces, the reverse happens and
energy dissipates. In this scenario, which is called relaxation of the fluid, vortex tubes grow
continuously “fatter” as vorticity decreases.
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Definition 2.3. Given a bounded region K of volume V with vorticity field ω(x, t), the
kinetic energy EK(K) and the energy contained in the vorticity field EV (K) are defined by

EK(K) =
1

2

∫
K

ρv2 dV

EV (K) =
1

2

∫
K

ω2 dV.

The total energy is then
E(K) = EK(K) + EV (K).

Say j = v × ω. Then j, v, and ω are all mutually perpendicular, and so |j| = |v||ω|.
It follows that ω × j = |ω|2v, since the cross product is a vector in the direction of v and
of magnitude |ω||j|. Therefore ∇ · (ω × (v × ω)) = |ω|2(∇ · v) = 0. Now, using this fact,
properties of vector calculus, and the frozen field equation for vorticity (3), we obtain:

dEV

dt
(K) =

1

2

∫
K

2ω · ∂ω
∂t

dV

=

∫
K

ω · (∇× (v × ω)) dV

=

∫
K

(∇× ω) · (v × ω) + ∇ · (ω × (v × ω)) dV

=

∫
K

v · (ω × (∇× ω)) dV

= −
∫
K

v · F dV.

This means that the rate of change of EV (K) is the negation of the work done by the force
F. This force will always have the same direction as velocity, because v determines the
direction of the vorticity field ω which generates F. Therefore work is positive, and hence
dEV

dt
(K) is necessarily always negative. We conclude that the energy of the vorticity field is

monotonically decreasing.
Note that because ∇ · v = 0,

v · ∇2v = v · [∇(∇ · v) −∇× (∇× v)]

= v · (−∇× ω)

= ∇ · (v × ω) − (∇× v) · ω
= ∇ · (v × ω) − ω2.

Applying the Navier-Stokes equation for conservation of momentum (2) and the Divergence
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Theorem, we now have:

dEK

dt
(K) =

1

2

∫
K

2v · ρ∂v
∂t

dV

=

∫
K

v ·
(
−ρ(v · ∇v) + ∇p+ F + µ∇2v

)
dV

= −ρ
∫
K

v2(∇v) dV +

∫
K

∇p · v dV +

∫
K

v · F dV + µ

∫
K

∇ · (v × ω) dV − µ

∫
K

ω2 dV

= −ρ
∫
∂K

v2(v · n) dS +

∫
∂K

p(v · n) dS + µ

∫
∂K

(v × ω) · n dS +

∫
K

v · F dV − µ

∫
K

ω2 dV,

where n is the unit normal to the boundary surface of K. If K is a closed, possibly knotted
vortex tube, then ω = 0 and v · n = 0 on its boundary ∂K, meaning that each of the above
surface integrals vanishes. The result is the following set of equations:

dEK

dt
(K) =

∫
K

v · F dV − µ

∫
K

ω2 dV. (4)

dEV

dt
(K) = −

∫
K

v · F dV. (5)

dE

dt
(K) = −µ

∫
K

ω2 dV. (6)

Therefore, for a nonzero velocity, there are two components to the transfer of energy:
the energy of the vortex field is converted to kinetic energy, and kinetic energy is lost to
heat. Both EV (K) and E(K) are monotonically decreasing. In the absence of topological
barriers, all energy is eventually transferred to heat, leaving the fluid at rest. However, if
K is knotted, the structure of the knot limits the dissipation of energy. We will prove the
existence of a positive lower bound for the energy of a nontrivial K, but first must review
the necessary knot theory.

3 Helicity as a Lower Bound

3.1 The Călugăreanu-White Linking Number

Any closed curve that is not self-intersecting is a knot and hence admits an infinite number
of knot diagrams. A knot diagram is any two-dimensional projection which distinguishes
between over-crossings and under-crossings of the knot (see Figure 3), and two knots are
equivalent if one can be deformed to the other continuously and without self-intersection.
A knot invariant is any property that holds under all such deformations, and thus is the
same for every possible diagram of a given knot. The same definitions apply to collections
of non-intersecting knots, called links. One such link invariant is the Gauss linking number.
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Figure 3: Equivalent knot diagrams representing the trefoil knot (left, center). Two diagrams are equivalent

if and only if one can be deformed to the other by some combination of the three Reidemeister moves (right).

Source: spie.org.

Figure 4: Crossings are assigned a value based on relative orientation (left). The linking number of the

Whitehead link (right) is 0. Source: inspirehep.net.

Definition 3.1. Given any diagram of two linked, oriented curves K1 and K2, the Gauss
linking number of K1 and K2 is given by

Lk(K1, K2) =
1

2

n∑
i=1

ki,

where ki = ±1 is a value determined by the relative orientations of the top and bottom strands
at the ith crossing of K1 and K2 (see Figure 4). Equivalently (Nipoti & Ricca [16]), if we
parameterize the curves by K1 = x(s) and K2 = y(t), then

Lk(K1, K2) =
1

4π

∫
K1×K2

(
dx(s)

ds
× dy(t)

dt

)
· (x(s) − y(t))

|x(s) − y(t)|3
dsdt.

This quantity is invariant because if we alter a given projection of a link so as to add
or remove a crossing between the two knots, we must add or remove both a positive and a
negative crossing, meaning that the net change to the Gauss linking number is 0. However,
if we try to define a similar invariant for a single knot K∗ by looking at its self-crossings,
a problem arises: we can add or remove a single crossing to the knot diagram by putting
in or taking out a loop (Reidemeister move I, Figure 3). This alters the overall sum of the
crossing values, which we call the writhe of the diagram. Since this definition of writhe can
be inconsistent for equivalent diagrams, we will instead use the Călugăreanu-White linking
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number. In determining this number we must first define the writhing number and twist of
a knot.

Definition 3.2. The writhing number Wr(K∗) of a knot K∗ is the average writhe of every
knot diagram admitted by K∗. Equivalently, using the parameterization K∗ = x(s),

Wr(K∗) = Lk(K∗, K∗) =
1

4π

∫
K∗×K∗

(
dx(s)

ds
× dx(t)

dt

)
· (x(s) − x(t))

|x(s) − x(t)|3
dsdt.

The writhing number of a knot measures the extent to which it coils around itself.
Now for K∗ = x(s), we parameterize a second curve y(s) = x(s) + ϵu(s), where ϵ is

constant and u(s) is a unit vector perpendicular to the tangent of x at s. Together, these
two curves form the boundary of a ribbon. In addition to the coiling of K∗, we can consider
the twist of the ribbon, which is defined as follows:

Definition 3.3. The twist Tw(K∗) of a ribbon bounded by x(s) and y(s) is the average
winding of the curve y(s) around x(s), given by

Tw(K∗) =
1

2π

∫
K∗

(
u(s) × du(s)

ds

)
· dx(s)

ds
ds.

Though the writhing number and twist are dependent upon the framing of K∗, their sum
is invariant.

Definition 3.4. The Călugăreanu-White linking number Lk(K∗) of a knot K∗ is the sum of
the writhing number and twist of K∗,

Lk(K∗) = Wr(K∗) + Tw(K∗).

Figure 5: Deformation of (a) a component of the writhe of a ribbon so that it becomes (c) a component

of twist. Though the writhe and twist are being altered, their sum is constant. The intermediate stage (b)

depicts torsion, which contributes to twist and will be discussed in section 5. Source: Moffatt & Ricca [14].

It is important to note that the writhing number and twist of a knot are invariant under
most types of deformation, including stretching and shortening of the knot. It is only when
a loop is added or removed, which involves the formation of an inflection point, that these
values are altered. In Section 5 we will ignore the possibility of inflection points and use
twist as an invariant.
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3.2 Helicity of a Vortex Tube

The axis K∗ of a closed, possibly knotted vortex tube K is a knot that is equivalent in type to
the tube itself. The tube, and hence its axis, is oriented based on the direction of the vorticity,
and any diagram of K∗ will inherit this orientation. The writhing number and twist of K
are then Wr(K) = Wr(K∗) and Tw(K) = Tw(K∗), where the normal u used to determine
twist connects the axis to some closed vortex line in ∂K. Because Lk(K) = Wr(K)+Tw(K)
is a knot invariant and vorticity is a frozen field under the Navier-Stokes equations, Lk(K)
is invariant under the Navier-Stokes equations. The Gauss linking number of a pair of linked
vortex tubes is the Gauss linking number of their respective axes, also an invariant under
Navier-Stokes.

Definition 3.5. Let L be a link comprised of vortex tubes K1, K2, ..., Kn with circulations
Φ1,Φ2, ...,Φn, respectively, with velocity field v and vorticity ω. Then the helicity of L is

H(L) =

∫
L

v · ω dV

or, equivalently,

H(L) =
n∑

i=1

Φ2
i Lk(Ki) + 2

∑
1≤i<j≤n

ΦiΦj Lk(Ki, Kj).

Helicity is a well-known invariant of incompressible, homogenous fluid motion, and in non-
trivial cases may be used as a lower bound for the energy of a vorticity field.

Theorem 3.6. For a collection of linked vortex tubes L, there exists a positive constant q
such that EV (L) ≥ q|H(L)|.

Proof. By the Schwartz Inequality,∫
L

v2dV

∫
L

ω2dV ≥
∣∣∣ ∫

L

v · ω dV
∣∣∣2 = |H(L)|2,

and by an adaptation of the Poincare Inequality (Moffatt & Ricca [10]) there exists a constant
q0, which is uniquely determined for the given domain, such that∫

L
ω2dV∫

L
v2dV

≥ q20.

If we multiply these two equations, we obtain(∫
L

ω2dV

)2

≥ q20|H(L)|2,

which, letting q = |q0|
2

, then simplifies to

EV (L) =
1

2

∫
L

ω2dV ≥ q|H(L)|. (7)
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Thus the energy of a collection of knotted vortex tubes with nonzero helicity is bounded
away from zero. However, there are many nontrivial knots and links with zero helicity,
such as the Whitehead link depicted in Figure 4, so this estimate is not sufficient. We
will now restrict ourselves to looking at a single knotted vortex tube K, which has helicity
H(K) = Φ2

i Lk(Ki), and will find a lower bound that is nonzero for every nontrivial knot.
For a more thorough discussion of helicity and the Călugăreanu-White linking number,

see Dennis & Hannay [3] and Moffatt & Ricca [14].

4 Asymptotic Crossing Number as a Lower Bound

The goal of this section is to prove the existence of a positive lower energy bound which
depends purely on the knot type of a vortex tube. The section’s primary theorem is as
follows:

Theorem 4.1. Given a knotted vortex tube K of volume V ,

EV (K) ≥
(

2

π

)1/3

V −1/3 cK(ω,ω).

Here cK(ω,ω) is the asymptotic crossing number of the vorticity field in the domain K,
which we will define below.

4.1 Background

The Gauss and Călugăreanu-White linking numbers are insufficient as lower bounds because
positively and negatively signed crossings may cancel, resulting in a value of zero for a
nontrivial knot. Instead, we will use an adaptation called the crossing number, which adds
the absolute value |ki|=1 at each crossing. We define the average crossing number c(K1, K2)
of two knots K1 and K2 as the average number of over-crossings of K1 and K2 among all
possible planar projections, which can be calculated using the formula

c(K1, K2) =
1

4π

∫
K1×K2

∣∣∣∣(dx(s)

ds
× dy(t)

dt

)
· (x(s) − y(t))

|x(s) − y(t)|3

∣∣∣∣ dsdt,
where x(s) and y(t) parameterize K1 and K2, respectively. This definition also applies to
the average crossing number of a single knot, c(K∗) = c(K∗, K∗). Since crossing number
disregards orientation and assigns each crossing a positive value, it must be positive for any
nontrivial knot and c(K1, K2) ≥ Lk(K1, K2) for all K1 and K2. We can extend the definition
to vector fields by considering the crossing numbers averaged over all field lines, as follows:

Definition 4.2. The asymptotic crossing number of any two vector fields W1 and W2 over
a domain D is given by

cD(W1,W2) =
1

4π

∫
D×D

|(W1(x) ×W2(y)) · (x− y)|
|x− y|3

dVxdVy.
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The asymptotic crossing number, like the Gauss and Călugăreanu-White linking numbers,
is a topological invariant that becomes an invariant of the Navier-Stokes equations when
applied to a fluid field. For a complete derivation of the asymptotic crossing number and
proof of its invariance, see Freedman & He [5].

We now compute the asymptotic crossing number of our knotted vortex tube K:

cK(ω,ω) =
1

4π

∫
K×K

|(ω(x) × ω(y)) · (x− y)|
|x− y|3

dVxdVy. (8)

Furthermore, note that

cK(ω,ω) ≤ 1

4π

∫
K×K

|ω(x)| |ω(y)|
|x− y|2

dVy dVx. (9)

In the following subsection we will make use of several known inequalities. They are

stated here without proof. We use the notation ||f ||p =
(∫

D
|f |p dV

)1/p
, where ||f || = ||f ||1

and D is the particular domain being considered; in our proof D = K.

Definition 4.3. The Riesz potential Iαf of a locally integrable function f on Rn, with
constant c determined by the values of n and α, is

Iαf(x) =
1

c

∫
Rn

f(y)

|x− y|n−α
dy.

Theorem 4.4. (Hardy-Littlewood-Sobolev Inequality)1 For 0 < α < n and 1 < p < n
α
, let

p∗ = np
n−αp

. Then for a locally integrable function f on Rn,

||cIαf ||p∗ ≤ C||f ||p
where

C = π(n−α)/2 Γ(α/2)

Γ((n+ α)/2)

(
Γ(n)

Γ(n/2)

)α/n

.

Note that the Gamma function satisfies Γ(n) = (n− 1)! and Γ(1
2

+ n) = (2n)!
4nn!

√
π for n ∈ N.

Theorem 4.5. (Hölder’s Inequality) If f and g are real- or complex-valued functions and
p, q ∈ R such that 1

p
+ 1

q
= 1, then ||fg|| ≤ ||f ||p ||g||q.

We are now ready to complete our proof.

4.2 Proof of Theorem 4.1

Proof. First, using Hölder’s Inequality, we obtain(
||ω||3/2

)2
= ||ω3/2||4/3

≤
(
||1||4 ||ω3/2||4/3

)4/3
=

((∫
K

dV

)1/4(∫
K

|ω|2dV
)3/4

)4/3

= V 1/3 · 2EV (K),

1For a proof of the Hardy-Littlewood-Sobolev Inequality, see Frank & Lieb, [4].
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and therefore

EV (K) ≥ 1

2
V −1/3

(
||ω||3/2

)2
. (10)

Because we are working in R3, the Riesz potential of |ω| with α = 1 is

I1ω(x) =
1

c

∫
K

|ω(y)|
|x− y|2

dVy. (11)

If we let p = 3
2
, then p∗ = np

n−αp
= 3, and the Hardy-Littlewood-Sobolev Inequality gives

C||ω||3/2 ≥ ||cI1ω||3. It follows from this and Hölder’s Inequality that

C||ω||23/2 ≥ ||ω||3/2 ||cI1ω||3

≥
∫
K

|ω(x)| |cI1ω(x)| dVx

=

∫
K×K

|ω(x)|
∫
K

|ω(y)|
|x− y|2

dVy dVx

≥ 4π cK(ω,ω).

We find the constant C as follows:

C = π
Γ(1/2)

Γ(2)

(
Γ(3)

Γ(3/2)

)1/3

= π

(
π1/2

1

)(
2

(1/2)π1/2

)1/3

= 22/3π4/3

Continuing from equation (10),

EV (K) ≥ 1

2
V −1/3

(
4π

C
cK(ω,ω)

)
=

(
2

π

)1/3

V −1/3 cK(ω,ω). (12)

Therefore, for any nontrivial K, EV (K) is bounded away from zero. Furthermore, Freed-
man & He [5] proved that cK(ω,ω) ≥ 2genus(K)− 1, where genus(K) is the minimal genus
of any compact, connected, oriented surface whose boundary is a knot of type K∗. The
genus of such a surface, called a Seifert surface, represents the maximum number of non-
intersecting simple closed curves that can be drawn on the surface without separating it
into disconnected components. The genus of a knot is a knot invariant which is zero only
for the trivial case, where K∗ is the unknot. Otherwise it is a positive integer, and hence
2genus(K) − 1 > 0.
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5 Estimating the Energy Minimum

Because the energy of a vortex tube is monotonically decreasing and bounded away from
zero, it must converge to a positive limit. In this section we will use a non-orthogonal
coordinate system to determine the energy purely as a function of topological invariants and
the length of the vortex tube. We then conclude that convergence to the energy minimum is
accompanied by either stretching or shortening of the vortex tube, as determined by volume
and knot type. Finally, we narrow our focus to vortex tubes that form torus knots.

In order to achieve the desired results we will restrict the discussion to vortex tubes that
are uniform along their length and of circular cross-section. The expression so obtained
provides an upper bound for the energy of any vortex tube that does not satisfy these
conditions (Chui & Moffatt, [2]). We will also presume a standard toroidal and poloidal flux
(defined below) and the absence of singularities, discontinuities, or inflection points during
the deformation process.2

5.1 Definition of a Non-Orthogonal Coordinate System

We begin by defining an appropriate coordinate system. We parameterize the axis K∗ of the
knotted vortex tube K by X(s), where s represents arc length from an arbitrary starting
point on the curve, L is the length of K∗, and V is the volume of K. Let

c(s) = the curvature
τ(s) = the torsion
t(s) = the unit tangent
n(s) = the unit principal normal
b(s) = the unit binormal; b = t× n

The curvature of K∗ is the magnitude of the rate of change of the unit tangent, and the
torsion is the magnitude of the rate of change of the unit binormal. They are defined by the
Frenet equations, as follows:

dt

ds
= cn,

dn

ds
= −ct + τb,

db

ds
= −τn. (13)

The vortex lines in K form a family of distinct nested surfaces Sχ, each bounding a
tubular neighborhood of K∗, where χ ranges from 0 to 1 so that S0 = K∗ and S1 = ∂K.
Then we let

Vχ = the volume of the area bounded by Sχ

χ = V/Vχ
θ = an angle measured from n in the plane spanned by n and b
Γθ = the intersection of ∂K and X(s) + r cos θn(s) + r sin θt(s) for a fixed θ
Nθ = the Gauss linking number of K∗ with the curve Γθ

ϕ = θ + 2πNθs/L
τ ∗ = τ − 2πNθ/L
r = R(s, χ, ϕ) = the distance between the point X(s) and Sχ in the direction of ϕ

2The coordinate system used in this section is not suited to working with inflection points. The possibility
of inflection points is discussed in Moffatt & Ricca [15].
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Figure 6: For a fixed θ, (a) the ribbon bounded by K∗ and Γθ, and (b) the ribbon bounded by K∗ and Γϕ.

Source: Chui & Moffatt [2].

Any point in K may be represented by traveling some distance along K∗ and then, with
the appropriate angle and radius, moving within a cross-section of K. Thus we adopt the
coordinate system (s, χ, ϕ) and, noting that s and ϕ are periodic with periods L and 2π,
respectively, we can represent any point x in K∗ by

x = X(s) + r cos θn(s) + r sin θb(s)

= X(s) +R(s, χ, ϕ) cos(ϕ− 2πNθs/L)n(s) +R(s, χ, ϕ) sin(ϕ− 2πNθs/L)b(s). (14)

We choose ϕ in place of θ in the interest of zero-framing. For a fixed ϕ and χ = 1, the
ribbon bounded by K∗ and the curve x(s) = (X(s) + r cos θ n + r sin θ b) has zero twist
(see Figure 6). Furthermore, because we are assuming that the vortex tube is uniform along
its length and of circular cross-section, Sχ has a constant radius of R(χ) for any χ. In
other words, R(s, χ, ϕ) is independent of s and ϕ. Then Vχ = πR(χ)2 L, and hence, letting

ϵ =
(

V
πL3

)1/2
,

R(χ) = ϵLχ1/2. (15)

We now write
dx = e1ds+ e2dχ+ e3dϕ

with basis vectors and the resulting metric tensor as follows:

e1 = (1 −Rc cos θ)t−Rτ ∗ sin θn +Rτ ∗ cos θb
e2 = R′ (cos θ n + sin θ b)
e3 = −R sin θ n +R cos θ b

(gij) = (ei, ej) =

(1 −Rc cos θ)2 +R2τ ∗2 0 R2τ ∗

0 (R′)2 0
R2τ ∗ 0 R2


=

(1 − ϵLχ1/2c cos θ)2 + ϵ2L2χτ ∗2 0 ϵ2L2χτ ∗

0 ϵ2L2/4χ 0
ϵ2L2χτ ∗ 0 ϵ2L2χ

 (16)
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where R′ = dR
dχ

. We denote by g the determinant of the matrix, and finally obtain the
Jacobian of our transformation:

J =
√
g = RR′(1 −Rc cos θ)

=
1

2
ϵ2L2(1 − ϵLχ1/2c cos θ). (17)

This is well-defined with the added assumption that K has sufficiently small cross-sections
to satisfy Rc < 1 at all points.

5.2 Energy Minimization

We now return to the vorticity field ω in the context of our new coordinate system. Because
the surfaces Sχ are comprised of vortex lines, ω · ∇χ = 0 and hence

ω = ω1e1 + ω3e3. (18)

Furthermore, ∇ · ω = 0 implies

∂

∂s
(
√
g ω1) +

∂

∂ϕ
(
√
g ω2) = 0. (19)

It follows that there exists a flux function ψ(s, χ, ϕ) satisfying

ω1 = − 1
√
g

∂ψ

∂ϕ
, ω2 =

1
√
g

∂ψ

∂s
. (20)

Let T (χ) denote the flux across any cross section of Sχ, called the toroidal flux, and P (χ)
the poloidal flux across any ribbon determined by a constant ϕ and bounded by K∗ and Sχ.
Then, by Chui & Moffatt [2], we can decompose ψ into

ψ(s, χ, ϕ) = ψ̃(s, χ, ϕ) − ϕ

2π

dT

dχ
+
s

L

dP

dχ
(21)

where ψ̃ is a single-valued, periodic function with a period of L in s and a period of 2π in ϕ.
Due to the assumption of uniformity throughout the vortex tube, ψ is independent of s. We
will now adopt the convention for the toroidal and poloidal fluxes of a standard flux tube:
P ′ = hT ′ = hΦ, where h = Lk(K) = H(K)

Φ2 (Chui & Moffatt [2]). Thus, letting

W1 =
√
g ω1 = −∂ψ̃

∂ϕ
+

Φ

2π
, W3 =

√
g ω3 =

hΦ

L
, (22)

the energy of the vortex tube is

EV (K) =
1

2

∫
K

ω2 dV

=
1

2

∫∫∫
K

√
g (ω1e1 + ω3e3)2 ds dχ dϕ

=
1

2

∫∫∫
K

1
√
g

(W 2
1 g11 + 2W1W3 g13 +W 2

3 g33) ds dχ dϕ. (23)
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Now we utilize the fact that ϵ =
(

V
πL3

)1/2 ≪ 1. We will determine the energy as a power
series expansion in terms of ϵ and, due to the smallness of ϵ, may disregard any terms with
a positive degree. Note that neither W1 nor W2 is dependent upon s, and also that

g11√
g

= 2
ϵ2L2 (1 − ϵχ1/2c cos θ + ϵ2L2χτ ∗2 + . . .)

g13√
g

= 2χτ ∗(1 + ϵχ1/2c cos θ + . . .)

g13√
g

= 2χ(1 + ϵχ1/2c cos θ + . . .).

We will use the trigonometric identity cos θ = cosϕ cos(2πNθs/L) − sinϕ sin(2πNθs/L) and
let

aN =

∫ L

0

c(s) sin(2πNθs/L) ds, bN =

∫ L

0

c(s) cos(2πNθs/L) ds.

Therefore,∫∫∫
K

W 2
1

g11√
g
ds dχ dϕ

=

∫ 1

0

∫ 2π

0

W 2
1

(∫ L

0

g11√
g
ds

)
dϕ dχ

≈
∫ 1

0

∫ 2π

0

2

ϵ2L2
W 2

1

(
L+ ϵχ1/2(aN sinϕ− bN cosϕ) + ϵ2L2χ

∮
τ ∗2ds

)
dϕ dχ. (24)

Because ψ̃(χ, ϕ), cosϕ, and sinϕ all have a period of 2π in ϕ, and all other terms are
independent of ϕ, (24) evaluates to:∫∫∫

K

g11√
g
W 2

1 ds dχ dϕ ≈
∫ 1

0

2

ϵ2L2

(
Φ

2π

)2(
L+ ϵ2L2χ

∮
τ ∗2ds

)
(2π) dχ.

=
Φ2

πϵ2L2

∫ 1

0

(
L+ ϵ2L2χ

∮
τ ∗2ds

)
dχ

=
Φ2

πϵ2L2

(
L+

1

2
ϵ2L2

∮
τ ∗2ds

)
. (25)

The same methods yield∫∫∫
K

(
2W1W3

g13√
g

+W 2
3

g33√
g

)
ds dχ dϕ

=

∫ 1

0

∫ 2π

0

2W1W3

(∫ L

0

g13√
g
ds

)
+W 2

3

(∫ L

0

g33√
g
ds

)
dϕ dχ

≈
∫ 1

0

(
2

(
hΦ2

2πL

)
(2χL

∮
τ ∗ds) +

(
h2Φ2

L2

)
(2χL)

)
(2π) dχ

= Φ2

(
h

π

∮
τ ∗ds+

h2

L

)
. (26)
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Thus, substituting these results into (23) and neglecting all positive powers of ϵ, we obtain

EV (K) ≈ Φ2

2πL
ϵ−2 +

Φ2

4πL

(
L

∮
τ ∗2ds+ 2hL

∮
τ ∗ds+ 2πh2

)
=

Φ2

2V
L2 +

Φ2

4π

(∮
τ ∗2ds+ 2h

∮
τ ∗ds

)
+

Φ2h2

2
L−1. (27)

For a unit normal u = n cos θ + b sin θ, using the Frenet equations and the fact that
dθ
ds

= −2πNθ

L
, we calculate du

ds
= −ct cos θ − τ ∗n sin θ + τ ∗b cos θ. Then

Tw(K) =
1

2π

∮ (
u× du

ds

)
· dx
ds

ds

=
1

2π

∮ (
τ ∗t− (c sin θ cos θ + τ ∗ cos θ)n + c(cos θ)2b

)
· t ds

=
1

2π

∮
τ ∗ ds. (28)

This is significant because, ignoring the possibility of inflection points, all quantities in
equation (27) except length are invariant under fluid motion. We can therefore obtain the
energy minimum by minimizing with respect to length, subject to the constraints of the field
topology.

dEV

dL
(K) ≈ Φ2

(
1

V
L− h2

2
L−2

)
=

Φ2

V L3

(
L2 − V h2

2

)
.

Clearly, the energy is decreasing where L <
(

V h2

2

)1/2
and increasing where L >

(
V h2

2

)1/2
,

and so is theoretically minimized where

L =

(
V h2

2

)1/2

. (29)

Recall that because V is constant, a decrease in length corresponds to an increase in cross-
sectional area, while tube stretching corresponds to a decrease in cross-sectional area. If
h is small, the energy decreases as L decreases, which continues until self-contact prevents
further cross-sectional growth. However, for a strongly knotted tube with a large h, the
length may initially be below the critical point, in which case tube length increases as the
energy is minimized.

For a sufficiently large h, substituting equation (29) into (27) provides a valid minimum:

min(EV (K)) ≈ Φ2

(
h2

4
+

1

4π

∮
τ ∗2ds+

h

2π

∮
τ ∗ds+

h

(2V )1/2

)
. (30)

However, h may be small enough that the length is prevented by the field topology from

decreasing to
(

V h2

2

)1/2
. Clearly, (30) is invalid for h = 0 because the length must be nonzero.

These options are depicted in Figure 7.
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Figure 7: (a) For a sufficiently small h, the initial length L0 decreases to
(

V h2

2

)1/2
. (b) For a large h,

the initial length L0 increases to
(

V h2

2

)1/2
. (c) The initial length L0 decreases, but a minimum length

Lmin >
(

V h2

2

)1/2
is imposed by the field topology.

In the next subsection we will look specifically at the class of knots called torus knots,
for which we can identify the minimum length, and hence the minimum energy.

5.3 Torus Knots

Figure 8: The T3,−8 torus knot. Source: wikipedia.org.

Consider a knot K∗ that lies on the surface of an unknotted torus T . Then let D be any
cross-sectional disk in T and let C be the axis of T . The wrapping number q of K∗ is the
minimum number of intersections of K∗ and D over all allowable deformations of K∗ in T .
The winding number, or degree, of K∗ is p = Lk(K∗, C). If p and q are coprime, we say that
K∗ is a torus knot of type Tp,q. The torus knots Tp,q and Tq,p are equivalent, and negating
either p or q yields the mirror image knot. Tp,q is trivial if and only if p or q is ±1.

We can parameterize a torus knot by

X(t) = R((1 + λcos(qt))cos(pt), (1 + λcos(qt))sin(pt), λsin(qt)) (31)

where 0 ≤ t ≤ 2π. We let λ > 0 so K∗ is left-handed. It follows that the length L of K∗ is

L = R

∫ 2π

0

√
λ2q2 + p2(1 + λcos(qt))2 dt = R ℓ(λ), (32)

where ℓ(λ) is defined by ℓ(λ) = L/R.

17



Now let K∗, a torus knot parameterized as above, be the axis of a vortex tube K with
uniform circular cross-sections. The radius of the tube is then R(1) = ϵL by equation 15.
There is a function d̃(λ) that satisfies

R d̃(λ) = min |X(t) −X(s)|. (33)

Figure 9: Local minimum dmin of the separation function for the trefoil knot T2,3 (left). Surface plot of

d(t, s) = constant for T2,3, where R = 1 and λ = .4 (right). Source: Chui & Moffatt [2].

For a small λ, d̃(λ) ≈ 2λ sin(π/p). If h is small, the energy of K is minimized when ϵL is
greatest, which occurs at half the minimum value of the function d(t, s) = |X(t) −X(s)|, so
we let d̃(λ) = 2ϵL. This implies

R3 =
4V

π ℓ(λ)(d̃(λ))2

and

L = R ℓ(λ) =

(
4V

π

)1/3(
ℓ(λ)

d̃(λ)

)2/3

. (34)

Having obtained L as a function of λ, we calculate the energy minimum by minimizing
L with respect to λ and then substituting the result into (27). See Chui & Moffatt [2] for
further detail and calculations given a variety of specific torus knots.
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