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Abstract—Our goal is to engineer Agouti Signaling Protein
(ASiP) for optimal selectivity and binding affinity to Melanocortin
Receptor 1 (MC1R) so that it can be delivered in tandem with
cisplatin to increase treatment efficacy for melanoma.

Index Terms—ASiP, Drug, Melanoma, In-Silico, In-Vitro,
CADD.

I. INTRODUCTION

CURRENTLY, a diagnosis of metastatic melanoma has a
fatal prognosis with a life expectancy of 6 - 12 months

[2]. Melanoma has a unique feature in that it is resistant to
chemotherapy because melanosomes sequester the treatment
agents [1]. For Melanocortin Receptor 1 (MC1R), a cell treated
with a-MSH will have greater melanosome production whereas
treatment with ASiP decreases melanosome production below
basal levels [3]. ASiP would function as a drug, in tandem with
cisplatin, by reducing the number of melanosomes present in
the cell, which would allow the chemotherapeutic to reach its
intended target.

II. DESIGN CONSTRAINTS

The process of producing a large enough quantity of protein
in a pure enough form for biological testing is both time
consuming and expensive. Additionally, since there are 20
different amino acids, even the design of a relatively small
number of residues presents an enormous number of possible
mutants. For example, for a sequence with 5 design residues,
there are 205, or 3.2 million possible mutants that could be
created. It is necessary to drastically reduce the number of
possible mutants, not only to produce a mutant sequence to test
in a reasonable period of time, but also to reduce the number
of necessary syntheses to keep the overall costs reasonable.

There is an additional constraint imposed on the design
of any protein, which is the proteins interaction with the
solution that it is designed for. In our situation, the goal is
to create a protein that will be administered as drug into a
cellular environment, which means an aqueous environment.
It is therefore essential that, overall, the protein not be too
hydrophobic even if we predict that increasing hydrophobicity
will increase affinity to the target receptor. In other words, we
need to balance affinity with solubility.

III. BACKGROUND

A. GPCR
G Protein-Coupled Receptors (GPCRs) play a central role

in many biological processes and are linked to a wide range of

disease areas ranging from feeding disorders to organ failure.
GPCRs are expressed in every type of cell in the body where
their function is to transmit signals from outside the cell,
across the cell membrane, to signalling pathways within the
cell. GPCRs also transmit signals between cells, and between
organ systems.

GPCRs are characterized by 7 transmembrane alpha helices
and are activated by an external signal which could be a ligand
or other signal mediator. The binding of the signal causes a
conformational change in the receptor, which in turn activates
the G protein. The additional downstream effect depends on
the class of GPCR. GPCRs are frequently divided into 6
classes (A-F) based on sequence and function similarity [4].
GPCRs function as amplifiers for the signals that they transmit;
a small amount of signal reaching the GPCR can result in a
large scale downstream effect within the cell.

Fig. 1. GPCR Signal Cascade. Image credit cmbi.ru.nl

Formed by over 1000 members and accounting for more
than 4% of mammalian genomes, the GPCR superfamily is
the largest and single most important family of drug targets
in the human body [5] [6]. GPCRs are the site of action of
nearly 40% of current drugs. Six of the top 10 and 60 of the
top 200 best-selling drugs in the US in 2010 target GPCRs,
generating multi-billion dollar sales annually [7]

B. Melanocortin System

The melanocortin system (MC) affects a wide range of
mammalian biological activities which range from controls
over feeding behavior, sexual behavior, metabolism, and pig-
mentation. The MC system consists of 5 different G-Protein
Coupled Receptors, designated MC1-5, and their ligands.
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The ligands belong to three different classifications; agonist,
inverse agonist, and neutral antagonist. The agonist ligand
for all receptors is Melanocortin Stimulating Hormone (a-
MSH), which activate the system. The inverse agonists drop
the system below basal levels and are either Agouti Signalling
Protein (ASiP) or Agouti Related Protein (AgRP) depending
on which system is being studied. There are also neutral
antagonists made up of members of the beta-defensin family
which prevent the agonist(s) from binding [8].

Fig. 2. GPCR Ligand Behavior. Image Credit springerimages.Biomedicine

In the Melanocortin Receptor 1 (MC1R), a cell treated
with a-MSH will have greater melanosome production whereas
ASiP decreases melanosome production. Melanosomes pro-
duce melanin which is often physiologically expressed as dark
pigmentation or coat color. Production of melanosomes is
controlled through the intermediary of cAMP.

Fig. 3. Signal Cascade at MC1R. Image Credit: Jillian Miller

All these ligands are small and cysteine rich, which means
that the majority of of their tertiary conformation is determined
by disulfide bonding. ASiP and AgRP have an inhibitor
cysteine knot(ick) fold [9], which is a toxin-like fold that had
never before been observed in mammals.

ASiP and AgRP are the only known endogenous (naturally
occurring as a part of a system) inverse agonists for a G
protein-coupled receptor.

This makes the melanocortin system an excellent model for
better understanding how GPCRs work, providing insight into

Fig. 4. (a)Tertiary Structures (b)Cystine Bond Sequences [3]

what is happening in many other GPCR systems. This research
has applications in treating melanoma, metabolic disorders
such as diabetes, regulating feeding behavior, vitamin D,
increasing UV protection. Additionally, disulfide rich proteins
are commonly used as scaffolds for therapeutics (drugs). If
we can design drugs that work like inverse agonists many
diseases could simply be turned off. For example, research
conducted by the Millhauser lab and its collaborators have
shown that treatment with ASiP leads to a 2-3 fold increase in
the efficacy of chemotherapeutics and that treatment with ASiP
prior to chemotherapy would allow metastatic melanomas,
which are naturally resistant to chemo, to be treated effectively
[3]. Furthermore, it has been shown that altering the potency
domain of AgRP by adding positive charge dramatically
increases feeding behavior [10], which could be used as a
treatment for cachexia, a wasting disease that is a common
side effect of both chemo and HIV treatment. Cachexia can
also be caused by cancers and HIV themselves as well as by
bacteria.

Conformation of wild-type ASiP was determined [8] in
order to understand how it binds to MC1R.

C. Melanoma

Cancer of the skin is the most common type of cancer.
Melanoma is primarily caused by ultraviolet radiation from
the sun [11] and affects people of all skin pigmentations
but is most common in lighter skinned people [12]. For
2013, The American Cancer Society estimated that 76,690
new melanomas will be diagnosed in the US and that 9,480
Americans were expected to die of melanoma [13].

While early stage melanomas can be treated very success-
fully through surgical removal, metastatic melanomas are ag-
gressive and cannot be treated with chemotherapy. Melanoma
has a unique feature in that it is resistant to chemotherapy be-
cause melanosomes sequester treatment agents [1]. Melanomas
resilience to chemo results in a generally fatal prognosis with
a five-year survival rate less than 10% [2] and a median life
expectancy of 6-12 months after diagnosis.
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D. Computational Drug Design

Rational drug design is the inventive process of finding new
medications based on the knowledge of a biological target. The
phrase “drug design” is somewhat misleading. Fundamentally,
drug design is ligand design, or the design of a biomolecule
that will bind tightly to its target [14]. In contrast to traditional
methods of drug discovery, which rely on trial-and-error
testing of chemical substances on cultured cells or animals,
rational drug design conducts all preliminary experiments
computationally, or in-silico. There are two requirements for
a biomolecule to be selected as a drug target. The primary
requirement is evidence that modulation of the target will
have therapeutic value. This knowledge generally comes from
experimental evidence such as disease linkage studies that
show an association between mutations in the biological target
and certain disease states. The second requirement is that the
ligand is ”druggable”, or that it is capable of binding to its
target and that its binding activity can produce the desired
downstream effect. Typically a drug target is a key molecule
involved in a particular metabolic or signaling pathway that
is specific to a disease condition or pathology such as a
transmembrane receptor. Some approaches attempt to inhibit
the functioning of the pathway in the diseased state by causing
a key molecule to stop functioning. Drugs may be designed
that bind to the active region and inhibit this key molecule.
Another approach may be to enhance the normal pathway by
promoting specific molecules that may have been affected in
the diseased state. Additionally, drugs can be designed to bind
to a signalling receptor to either ramp up or turn down a
downstream cellular activity. In all cases, it is tremendously
important that designed drugs do not affect any other important
“off-target” molecules or anti-targets since drug interactions
with off-target molecules may lead to undesirable side effects
[15].

There are two major types of drug design, ligand-based
drug design and structure-based drug design. Ligand-based
drug design, or indirect drug design, relies on knowledge of
other biomolecules that bind to the biological target of interest.
Structure-based drug design, or direct drug design, relies on
knowledge of the three dimensional structure of the biological
target obtained through methods such as x-ray crystallography,
or NMR spectroscopy [16]. If an experimental structure of a
target is not available, it may be possible to create a homology
model of the target based on the experimental structure of a
related protein. Using the structure of the biological target,
candidate drugs that are predicted to bind with high affinity
and selectivity to the target can be designed.

Computational design uses algorithms that predict 3d struc-
ture and molecular dynamics to allow target-ligand interactions
and ligand-solvent interactions to be modeled and engineered
in-silico.

Ideally, the computational method will be able to predict
affinity before a compound is synthesized and hence in theory
only one compound needs to be synthesized, saving enor-
mous time and cost. The reality is that present computational
methods are imperfect and provide, at best, only qualitatively
accurate estimates of affinity. In practice it still takes several

iterations of design, synthesis, and testing before an optimal
drug is discovered. Computational methods have accelerated
discovery by reducing the number of iterations required and
have often provided novel structures [17] [18].

IV. METHODOLOGY

A. Identify the Design Region

We have strong experimental evidence to suggest that 6
residues within ASiPs C-terminal loop conferred much of the
ligands specificity to MC1R [19] through the receptors first
extracellular loop [3]. The design focus of this experiment
was to optimize the sequence of those 6 residues to maximize
affinity between MC1Rs first extracellular loop and ASiPs C-
terminal loop, therefore facilitating optimal selectivity.

Fig. 5. ASiP C-terminal loop interacting with MC1R EC loop 1 [3]

Fig. 6. In-Vitro Alanaine Scan of Design Region [19]

B. Calibration to Known Biochemistry

We sought to calibrate our predicted output by performing
a computational alanine binding scan and comparing changes
in in-silico binding to the in-vitro alanine scan results. We
chose the Docking2 protocol on the ROSIE (Rosetta Online
Server that Includes Everyone) server supported by the Gray
Lab at Johns Hopkins University as our scoring algorithm for
performance, resource allocation, and speed reasons [20] [21]
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[22]. Rosetta has repeatedly been shown to produce excellent
results in predicting binding between peptides and globular
proteins [23] [24]. Having a supported server allowing us to
perform our docking runs meant that we did not have to find
our own cluster to perform runs on. Finally, Docking2 makes
use of Rosettas local docking algorithm which allowed us to
use our previous knowledge of the ASiP-MC1R interface and
upload a PDB with the peptide already reasonably positioned
with regards to the receptor which allowed us to skip global
docking and thus save an enormous amount of computational
time.

The computational alanine was performed by first using
RosettaDock to score Wild Type (WT) ASiP affinity for
MC1R. We then generated alanine point mutations for each
of the design residues and docked those to MC1R. Finally,
we compared the docking scores to the Ratio of Apparent
Dissociation Constant reported in the in-vitro Alanine Scan.

Fig. 7. Ideal RosettaDock Scoring Funnel [20]

The ideal scoring funnel shown above provides a visual
reference for the validity of the minimal energy score output.
Unfortunately, we did not get an ideal minimization funnel
with our first data set. Instead, we got erratic score predictions
as can be seen in visual output of one of our runs shown below.

Fig. 8. Scoring Funnel from our first Docking runs [20]

In addition to the visual indication that our output was not
funneling well, we observed scores that did not consistently
match with known biochemistry. It was determined that our
inconsistent results were caused by incomplete sampling. The
Docking2 algorithm only provides 1000 decoys and it is not
possible to adjust this parameter. We increased our sample size
by submitting each docking task ten times for a total of 10,000
decoys. The additional sample size resulted in very consistent

scoring results and a minimization funnel that is very close to
the ideal.

A large part of our interest in computationally replicating
the in-vitro alanine scans was to identify a constant that
would allow us to relate changes in docking score to the
experimentally observed Kiapp ratios shown in 6

C. Sequence Optimization

To find a sequence for our design region that would optimize
affinity for MC1R, we used the Seq-Tol design algorithm
through the ROSIE server at Johns Hopkins University. The
application uses biological knowledge to predict the relative
frequencies with which amino acid residues are predicted to be
”tolerated” without significantly compromising the stability of
a given protein-protein interface and the respective interacting
partner proteins [25] [26].

Fig. 9. ROSIE Seq-Tol Application Workflow [25] [26]

We provided a PDB file of Wild Type ASiP docked to
MC1R as it input, and specified the 6 residues on ASiP that
we wanted to optimize. During the first step, Rosetta scores
the native interface. Next, the algorithm removed the 6 native
residues and generated a library of biological pseudo-random
6-mers which were then docked to MC1R in the native position
and scored. Sequences with folding and binding scores near or
significantly better than the starting sequence were saved and
considered to be “tolerated”. At the end of a simulation, the
frequency with which each amino acid type appeared in the
list of tolerated sequences was calculated and used to generate
a position-specific ”tolerance profile” for each interface site.

D. Computational Mutation of Native Ligand

ROSIE currently does not return the structure of the ligand
with the optimal design sequence, so we manually mutated our
ligands PDB file using pyMol. By sampling multiple trials, we
determined that the rotameric options that pyMol provides are
not relevant to our experiment because Rosetta will determine
optimal conformation during the preceding docking runs.

E. Prediction of Mutant Performance

We repeated the Computational Alanine Scan described in
Calibration to Known Biochemistry section on our designed
mutant to compare its computational binding performance to
WT ASiP to predict what the in-vitro biochemical performance
of the mutant would be when synthesized. Our hypothesis
was that a mutant residue could be considered to be an
improvement over the native if it exhibited a larger decrease
in score performance than the WT residue when mutated to
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alanine and docked to MC1R. A mutant would represent an
overall improvement in affinity over the WT if the mutant
docking score was better than the WT representing a lower
energy state between the mutant ligand and MC1R.

The final step in the computational analysis was to translate
the designed mutants Docking Score into an overall prediction
of improvement in binding affinity. To do this, we wanted to
relate the docking score from the WT ligand to the docking
score of the designed ligand using the score-to-affinity con-
stant.

V. RESULTS

A. Calibration

The results of our computational alanine scan are consistent
with in - vitro chemical experiments. The scores for alanine
substituted positions were worse than the unsubstituted bind-
ing score, which qualitatively matches the results of the Keifer
in vitro alanine scan.

Fig. 10. Computational Alanine Scan Scores

There were 2 exceptions to this rule, the docking scores
for residues 129 and 130 show a predicted increase in bind-
ing affinity when substituted with an alanine. This was an
unexpected outcome since general biochemical knowledge
indicates that an alanine substitution should decrease affinity
and the in-vitro scan showed a small decrease in binding for
alanine substitutions at those positions. Since both the WT
and Mutant ligand displayed increased binding for alanine
substitutions at these positions, we investigated further. Ala-
nine is a reasonable point-mutation at these residues, in that
it is slightly hydrophobic and these positions interface with
hydrophobic regions of MC1R EC loop 1. Alanine was also
predicted to be tolerated by the Seq-Tol application, though
it was not considered to be the most tolerated amino acid for
either of those positions.

We were not able to create a consistently viable Score-to-
Affinity constant. The in-vitro alanine scan showed decreases
in affinity for residues 126 - 129 that were larger than the
decreases for residues 130 and 131. Ignoring the results for
residues 129 and 130 that we have already discussed, we note
that the computational alanine scan shows the largest decrease

in affinity for a substitution at 131 and the smallest decrease in
affinity for a substitution at 128. While a decrease in affinity
is consistent with expectations, it can be noted that the relative
magnitude of the computational results at these residues are
in direct conflict with the relative magnitudes of the in-vitro
results [6, 10].

Our current thoughts are that the Ki ratio for the residues in
our chosen design region are too small to detect with consistent
docking scoring, that the Ki ratios for these residues are small
enough to be lost in scoring noise. (See the Next Steps section
about our planned future experiments to identify a docking
score to affinity constant by looking at residues outside of our
design region.)

B. Sequence Optimization

Repeated trials of the Seq-Tol application returned the same
predicted sequence with the same relative tolerances.

Fig. 11. Relative Tolerance Output per Position

Sequence Comparison:
WT Sequence (126-132): RVLSLNC
MUT Sequence (126-132): FRGSRGC

Examining the changes between the mutant sequence and
the WT sequence, we see a single base movement of Arginine.
There is an overall drop in hydrophobicity with removal of the
valine and leucines, an increase in flexibility with the addition
of the two glycines and increase in positive charge provided
by R130. These results are not only reasonable from the
standpoint of increasing affinity, but the drop in hydrophobicity
means that the mutant protein can be expected to be more
stable in an aqueous environment which should make the
protein both easier to work with in-vitro and more likely to
retain functionality in-vivo.

C. Prediction of Mutant Performance

Overall: For all in-silico experiments, our designed mutant
has out-performed the WT ligand.
With the exception of residues 129 and 130 which have already
been discussed, the computational alanine scan scores showed
a decrease in binding affinity for each residue substituted
with alanine, indicating that those amino acids contributed
significantly to binding. Comparing the computational alanine
scan results we see that, in general, at each residue the mutant
showed a much larger decrease in predicted affinity than the
WT did when the given residue was substituted with alanine.
The larger changes in scoring for the mutant indicate that the
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amino acid in the mutant that was replaced with an alanine
was more for binding than amino acid in the WT.

Fig. 12. The Y-axis represents the difference in docking score between the
unsubstituted ligand and the alanine-substituted ligand for each residue. Wild
Type: Blue. Mutant: Green

The lowest mutant binding score was -84.781 while the
lowest WT binding score was -83.840 leading to a prediction
that the mutant will demonstrate better overall affinity for
MC1R than the WT does.

Fig. 13. Scores shown are the lowest docking score obtained for each ligand
after 10,000 docks

Fig. 14. Designed ASiP Mutant docked to MC1R

VI. DISCUSSION

In the Calibration Results section we noted that the compu-
tational alanine scan showed a much more significant decrease
in binding affinity when WT residue 131 was substituted with
an alanine than the in-vitro alanine scan reported. It should
be noted that the computational alanine scan also showed a
relatively large decrease in binding affinity when the mutant
residue 131 was substituted with an alanine. Perhaps this is an
artifact of the scoring algorithm, but it seems to indicate that
perhaps residue 131 plays a more significant role in binding
than was previously considered.

At this point we have taken our prediction system as far as is
reasonable. We have a mutant sequence that is biochemically
promising and reason to believe that the mutant will out-
perform the WT. Keeping in mind that bioinformatics can
only provide us with an informed hypothesis, the next step
is to synthesize the mutant sequence and test it in-vitro.

VII. NEXT STEPS

Search for a score to affinity constant: We will run a
computational alanine scan on residues where the in-vitro
alanine scan showed a very large Ki Mut/WT ratio, specifically
residues 118-120 (RFF). Since these residues showed an
enormous response to an alanine substitution the comparative
score changes should be well outside of the noise range and
it is possible that a constant relating score and affinity can be
found.

We are interested in the whether the unexpected scores for
both the WT and mutant for alanine substitutions at residues
129 and 130 are the result of an artifact or indeed significant.
However, since the primary goal of this project is to produce
a mutant of ASiP with optimal affinity for MC1R to be
used as a drug for metastatic melanoma, we will focus our
current efforts on whether the results can be used to produce
a mutant sequence with stronger affinity to MC1R than the
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mutant sequence (126-132: FRGSRGC). To this end, we will
replace both 129S and 130R with alanines and dock the new
mutant. We will repeat this substitution with leucines instead
of alanines to test whether an increase in hydrophobicity is
beneficial. Based on the results of the first two experiments,
we may choose to computationally experiment with different
combinations of A and L at mutant residues 129 and 130. If
the AA or LL mutants produce better affinity score predictions
we will consider synthesizing mutants with these amino acids
replacing the R and G.

Once we have a sequence that is agreed upon by both
the in-vitro and in-silica researchers we will proceed to
synthesis. The Millhauser lab has a well-established solid
state protocol for synthesizing ASiP. We will synthesize
our computationally-designed mutant and test its affinity for
MC1R using our already-established competition assay. In-
vitro competition performance will inform our computational
model and provide possible changes to our design and pre-
diction methods so that further iterations are even more
successful.

VIII. CONCLUDING THOUGHTS

Designing drugs is a complicated and time-consuming prac-
tice. While no computational design method is able to produce
a perfect drug on its first iteration, computational design
has been shown to speed up discovery time, predict novel
structures, and significantly reduce costs Proteins-as-a-drug are
a cutting edge technology that can offer multiple advantages
over small molecule drugs. For example, proteins bind more
selectively to their targets (less promiscuous) which results in
less “off target” hits, aka side effects. Being physically larger
than small molecule drugs, proteins are also less likely to
cause side effects by diffusing into unintended parts of the
body. Additionally, proteins are the typical signals for most
biological systems. Using proteins as drugs allows us to use
the systems’ own signals to get the cellular response that we
desire (this probably needs to be cited). However, the design of
proteins as drugs is even more costly and time consuming than
that of small molecules, due both the size of the design regions
and the complicated nature of protein tertiary structure and
its interactions with its solvent environment. So, while using
computational methods to assist in the design of a peptide
as a drug is much more difficult than using similar methods
to design small molecule drugs, the reduction of time and
costs associated with the use of computational methods to aid
the design of proteins is of even greater value. Using in-silico
predictions to guide melanocortin in-vitro chemistry represents
a rare meeting of rich biochemical knowledge and decades of
experimental results, with a new technique in computational
design. The combination will allow for both practices (in-silico
and in-vitro) to inform each other, providing rapid feedback
and improvement of methodology.
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