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Abstract

CREATION OF SYNTHETIC RADIAL VELOCITIES TO FOLLOW UP TESS

OBSERVATIONS

by

Barbara Giusti

The use of synthetic radial velocity data sets and Monte Carlo simulations is a valuable

exercise to analyze and predict the time frame necessary for a ground-based telescope to

observe and verify the data collected by a space-based telescope. The proposed Transiting

Exoplanet Survey Satellite Mission will collect and record transit photometry (and transit

timing variations) of stars spanning F5 to M5 spectral type. Stars harboring candidate

planets will then be examined, using Doppler velocimetry, by ground-based telescopes to

verify and confirm the existence of the planetary systems. The minimal time interval and

ideal location for the follow-up observations will be established according to a pre-specified

10% estimation error on the planetary masses. The synthetic data utilized for this task will

be generated, analyzed, and then compared to the known input values using the Systemic

Console software package. Although the Systemic Console is currently used to analyze

existing RV data sets, it can also be employed to create comparable new ones. The script,

built using a Java script code (BeanShell), assigns coordinates to the observed stellar targets

(Right Ascension, RA and Declination, DEC) and to the available observing locations on the

ground (Latitude, LAT and Longitude, LON). When the program is initialized, it registers

the current time and runs the clock forward at a 15-minute increment. Constraints, such

as chances of site availability, favorable weather, full moon, and altitude are an essential



component of the script. The code can also ingest orbital parameters derived from the

experimental data and then generate new sets of synthetic radial velocities. Following this,

the new data will be loaded into a Levenberg-Marquardt optimization algorithm and the

output is a new, best-fit planetary system. The thus-producedOriginal.fit andMinimized.fit

files are compared by looking at the corresponding planetary masses. If the planetary masses

of the synthetic and observed systems are to within 10% of each other, then no more data

will be collected. If the two examined planetary masses differ by more than 10%, then more

RV data will be generated to decrease the error. The final result, which is a module within

a larger project that is currently underway, will compare four variables: 1) a projected

budget, 2) within this budget, the number of ground-based instruments from which we can

observe, 3) the best location for observation, and 4) the minimum number of observation

needed to corroborate the observational data received form TESS. It is our hope that this

methodology will be employed to substantially increase the prospects of success for the

TESS Mission.
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1

Introduction

The first Jovian extra-solar planet, 51 Pegasi b, was discovered in 1995 by two

Swiss astronomers, Michel Mayor and Didier Queloz. In the intervening years, over 600

candidates have been considered to qualify as exoplanets (http://exoplanet.eu). We have

discovered an average of seven exoplanets every month since 1995 and the number is increas-

ing rapidly as technology advances. This has made it necessary to find ways to corroborate

the planetary discoveries with the least possible amount of available data and within a defin-

able budget. The use of synthetic radial velocity data sets, within the context of a lerge-scale

Monte-Carlo simulation, is a valuable exercise in analyzing and predicting the time frame

necessary for a ground-based telescope to observe and verify the data collected by an or-

biting one. TESS (Transiting Exoplanet Survey Satellite) is a joint project between MIT,

Caltech, UCSC, NASA Ames Research Center, and the Harvard-Smithsonian Center for

Astrophysics. The projected mission operation time is two years. The project just recently

passed NASA’s phase-A study and it is projected to launch in late 2016 [Ricker (2011)].

The TESS mission will be an improved successor to the currently active KEPLER mission.
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It will corroborate KEPLER’s findings and use new and more sensitive data gathering tech-

niques with the purpose of confirming more than 1,000 extra-solar planets. KEPLER was

launched on March 6, 2009 [Borucki et al. (2009)] to quantify the frequency of Earth-size

planets around Sun-like stars. About 1/3 of the 1200 transiting planet candidates detected

in the first four months of the Kepler mission were found to be members of multiple can-

didate systems [Lissauer et al. (2011)]. The satellite was equipped with a 95 cm aperture

telescope and 42 CCD cameras acquiring images with a total resolution of 95 million pixels

[Borucki et al. (2009)]. As a comparison, the Hubble Space Telescope (HST) has an optical

aperture that is about two and a half times greater than the aperture of the KEPLER tele-

scope, but is only equipped with 8 CCD cameras. KEPLER is a better device to analyze

large areas of the sky. KEPLER is currently surveying and monitoring about 150,000 stars.

It’s field of view is limited to a 105 square degree area of the Cygnus-Lyra region, just above

the galactic plane. This area provides a rich field of stars in our vicinity.

Two systems are primarily used to identify the presence of a planetary system

around a star. 1) The detection of periodic drops in brightness of a star (or transit photom-

etry) which can indicate the passage of a potential planet in front of its parent object as

shown in Figure 1.1. 2) The detection of the stars’ Doppler radial velocities (RV), method

accredited with 90% of planetary discoveries, as represented in Figure 1.2. The analysis of

detected RVs is one of the most widely effective techniques in the study of orbital parameters

such as planetary masses, orbital eccentricities, and orbital periods [Meschiari et al. (2010)].

While KEPLER was able to indicate the existence of more than 1,235 planetary

system candidates, the lack of an effective verification system creates uncertainty and doubt

within the scientific community. Ground-based telescope observations have revealed an
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Figure 1.1: Photometric data belonging to the star HD187123 which shows a prediction of planetary

transit. The curve shown is based on the presence of one planet believed to have a period of 3.097

days and a semi-amplitude of 72 m/s. [Robb R.M. et al. (1999)]

average of ten false positives to one possible detected planetary system to be a base-line

expectation for purely photometric surveys [Torres et al. (2010)]. The exact ratio of false

positives for a space-based telescope such as KEPLER has not yet been determined with

accuracy, but we can analyze its data and understand its main pitfalls.

In particular, the Kepler mission is expected to yield transiting Earth-mass plan-

ets in the Habitable Zone (HZ) as part of its mission objectives, through continuous and

simultaneous photometric sampling of more than 100,000 main-sequence stars. However,

this class of objects will likely represent a small percentage of the detections (given the

constraints of the mission design), and a much larger number of Neptune-mass and giant

planets will be likely detected [Meschiari & Laughlin (2010)]. There are three major false

positives common to KEPLER’s analysis. 1) The presence of a binary star system. When
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Figure 1.2: Radial velocity data for the star HD187123. This data was collected at the Keck

Observatory and shows the inner planet (top) with a period of 3.1 days and a lower limit on the

mass of 0.5 MX. The bottom graph shows an outer planet with a period of 3810 days and a lower

limit on the mass of 2 MX [Wright et al. (2007)].

two stars orbit each other they can mimic the photometric and radial velocity data collected

for a planetary system they will give rise to a photometric detection similar to that of a

planetary system. 2) Planets with a radius and mass similar to Earth are difficult to confirm

using RV readings alone. As the stars magnitude increases and the amount of light gathered

decreases, the detection of RVs becomes even more difficult if not impossible. A planet with

similar terrestrial characteristics is unlikely to cause a detectable change in motion of the

parent star. 3) The geometry of the KEPLER telescope aperture is such that the field of

view can include more than one star. This effect increases the possibility of blending a

collection of photometric data gathered from more than one subject [Torres et al. (2010)].
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This phenomenon occurs when the photometric data collected from a specific candidate

is contaminated by the presence in the foreground or background of a binary star and/or

a combination of star-planet systems. For instance, in the case of a binary star situated

in the background of the host star of a candidate planet, the signature light of the target

reduces the depth of the binary system eclipsing event, resulting in a transit-like signal.

In another case, the candidate’s light is diluted by the presence of other stars in the tele-

scope’s aperture. Even at high resolution, there have been images counting up to four stars

within fifteen arc seconds of the target [Torres et al. (2010)]. These combinations of star

and planets can cause “blending”, and they must be systematically ruled out before reach-

ing any conclusion. This means that while the ground-breaking KEPLER mission collected

thousands volumes of photometric data, it is ultimately not able to differentiate between

potential planetary systems and possible anomalies. To minimize follow-through on false

positives, and to attain a more effective use of research fundings, we need the right tools to

make more accurate guesses on the existence of planetary systems around observed stars.

TESS will examine over 2 million stars with an efficient all-sky coverage 400 times

greater than KEPLER’s (wide), and with magnitudes between 4.5 and 12 (shallow). The

project is thus termed an all-sky, wide-shallow survey [Ricker et al. (2009)]. The TESS

budget is going to have a greater consideration for follow up using ground-based observations

and its parameters are going to be established according to trials and predictions using

synthetic data matched to actual data collected by the space telescope. Thus, the ground-

based follow-up will independently corroborate the data collected by the orbiting telescope

and use it to establish the presence of extra-solar planets.

For this purpose, we use a computer algorithm that creates thousands of simulated
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sets of RVs that will subsequently be matched with the existing sets. The final achievement

is to minimize the amount of synthetic values the computer program creates and see how

they fit the model with a minimal standard deviation and, through this method, the ground-

based observing time and location for optimal detection can be set within 10% of error. The

program was built using a Java script code (Beanshell), that serves as an API to a complex

software package, the Systemic Console, which will be examined more in detail in Chapter

4. The Systemic Console is currently used with the purpose of analyzing Doppler radial

velocities and transit timing observations [Meschiari et al. (2009)] and fitting the data to

possible orbiting planets.

The program takes into account various weather and astronomical constraints and

creates multiple sets of RV for up to one thousand stars per data set. The synthetic data

will then be matched to the actual data in order to predict and verify planetary motion.

The final result will compare four variables: 1) a projected budget, 2) within this budget,

the number of ground-based instruments that could be built, 3) optimal observing time

frames, 4) matched expectation values. The following research thesis will be dedicated to

the explanation and description of this method. Chapter 2, will explain what methods can

be used to collect information about exoplanetary systems, and how RV detections occur

and are represented by mathematical expressions. Chapter 3 will discuss the Keplerian

method of integration, uncertainties, and false positives. Chapter 4 will show how the

Systemic Console works, how the files are divided, and how it can be used to obtain orbital

elements’ best fit. Chapter 5 explains and shows how the code built in the Systemic

Console was manipulated to aid the TESS project. Finally, Chapter 6 presents the current

results and discusses the next phases of this ongoing research.
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2

Theoretical Understanding

The core accretion model is currently the most widely accepted theory of planet

formation. The accretion starts partially from a pressure-supported sub-Keplerian disk

containing gas and dust. The dust particles collide, grow, and form rock-ice planetary

cores. When a core becomes massive enough with gas still present in the disk, it grav-

itationally gathers gas and rapidly increases in mass. Through hydrodynamical, n-body

simulations, and appropriately parametrized damping, the phenomenon described above

can be explained by noting that short period planets form farther out and migrate inwards

to their final semi-major axis [Wright et al. (2009)]. Planetary formation has been at the

heart of astronomical research for the past 250 years, and it has been recognized that there

is an important constraint to apply when considering planetary formation: co-planarity

[Lissauer et al. (2011)]. Our current understanding leads us to believe that growth within

an accreting disk generally yields circular orbits and low relative inclinations. The Solar

System is an example of such a configuration: eccentricity and inclination reach their maxi-

mum with Mercury that holds e' = 0.21 and Earth’s inclination (if Pluto is not considered)
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i⊕ = 7.2◦ with respect to the Sun’s equator.

2.1 Planetary inclinations

The inclination distribution of exoplanets is a fundamental aspect of planetary

system dynamics. Yet neither transit observations, nor any other technique, have directly

measured the true mutual inclination between planets observed in multiple systems, other

than in a few in unusually fortuitous circumstances. Indirect constraints, however, can be

obtained for stable systems with multiple transiting planets, considered the best examples

of mutual inclinations around main sequence stars. For example, the lack of transit timing

variations (TTV) can be used to constrain mutual inclinations. Occasionally, it will be

possible to measure mutual inclinations from exoplanet mutual events such as measurements

of the Rossiter-McLaughlin effect of planets in the same system [Lissauer et al. (2011)]. The

Rossiter-McLaughlin effect determines the sky-projected angle between the stellar rotation

axis and the planetary orbital axis. Furthermore, two or more planets initially on coplanar

circular orbits (e.g. similar inclination) with sufficient orbital separation can never develop

crossing orbits. These exoplanets are called “Hill Stable” [Lissauer et al. (2011)].

∆orb =
ao − ai
RH

> 2
√
3 ≈ 3.46, (2.1)

where ai is the semi-major axis of the ith planet and RH is the mutual Hill sphere radius,

the distance within which a planet feels the gravitational force of another body.
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2.2 Detection of exoplanets

The stellar mass, M⋆, and a exhaustive sample of its radial velocities can help

determine the presence of a planetary system. However, the strength of the radial velocity

signal usually diminishes with increasing periodicities. This phenomenon is due to the

smaller gravitational force that a distant planet exerts on its star. Furthermore, a planet

with orbital eccentricity, e, and longitude of periastron (the orbital angle of a planet when it

is the closest to its host star), ω, produces transits visible from the Earth with a probability

given by [Charbonneau et al. (2007)]

Ptr = 0.0045

(

1AU

a

)(

R⋆ +Rpl

R⊙

)

[

1 + e cos
(

π
2 − ω

)

1− e2

]

. (2.2)

By noting that Ptr is inversely proportional to the semi-major axis a we can deduce that

the greater the planet’s orbital distance from its host star, the harder it will be to detect it.

If the star is bright enough, a reasonable estimate of its radius, R⋆, can be cal-

culated and the planetary radius, Rpl, can be obtained by measuring the fraction of the

parent star light that is occulted. By definition, transiting planets have their orbits oriented

so that the Earth lies in, or close to, their orbital plane, but this is not a very common

circumstance and we therefore have to rely on other techniques to characterize most of the

planetary systems. In the case of a single planet orbiting its host star, (multiple planet

systems are harder to identify and describe), if the planetary transit is observed and we can

accurately measure the orbital inclination, i, we can evaluate the planetary mass Mpl di-

rectly from the limiting mass Mpl sin i. If the orbital inclination is not known, by assuming

that the stellar rotation is aligned with the orbital plane, we can derive sin i by combining

the observed radial velocity (RV), υ sin i, with the equatorial velocity, or angular motion of



12

the star about its axis Vequ [Mayor & Queloz (2005)]. The faster the star rotates on its own

axis, the harder it is to disentangle the two sets of velocities belonging to the system.

Vequ = 2πR/P (υ sin i), (2.3)

where υ sin i = Vequ sin i.

The first system known to include multiple planets was a triple one, νAnd, discov-

ered by Butler et al. in 1999. In 2007, at least 1/4 of known planetary systems showed

evidence of multiple companions [Wright et al. (2007)]. By March 2009, 14% of known

stars hosting planets within 200 pc (≈ 653 ly = 6.17 × 1015 km) were known to have

multiple-planet systems, and another 14% showed significant evidence of multiplicity ob-

served through the long-term radial velocity data monitoring [Wright et al. (2009)]. Need-

less to say, multiple planet systems that have been observed and described only in recent

years, and yet very common in the observable universe, require much more complex algo-

rithms to disentangle system parameters from the radial velocity signature. Planet-planet

interactions can significantly alter the system dynamics and, often, should not be underesti-

mated. These dynamics can cause detectable variations in the orbits of the planets and a set

of constant Keplerian orbital elements is no longer sufficient to model the observed radial

velocities. The resulting system models are non-linear and cannot be described analytically

(through closed-form functions). A proper fit must be derived with the use of a n-body

code (a Newtonian or a dynamical fit). Characterizing such arrangements in the shortest

possible time, and the efficient search of the χ2 space has developed into a real art. The

final goal is to find a global minimum. Long-term stability is another constraint that must

be taken into account when considering multi-planet fits and elements such as inclination

(see Section 2.1), and eccentricities can seriously constraint the development of a stable
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planetary system. Fortunately, in many cases, planet-planet interactions are sufficiently

weak that they can be ignored, and the resulting radial velocity signal is simply the linear

superposition of multiple Keplerian radial velocity curves (a Keplerian or a kinematic fit).

Figure 2.1 helps summarize the characteristics of planetary systems discovered before and

Figure 2.1: Distribution of exoplanets according to M sin i with an upper limit of 13MX for known

multiple-planet systems (solid) and apparently single systems (dashed) [Wright et al. (2009)].

during the KEPLER mission. 1) Multi-planet systems exhibit an apparent overabundance

of planets with 0.01 MX ≤ Mpl sin i ≤ 0.2 MX (as a point of reference M⊕ = 0.0315 MX).

2) The number of known systems hosting planets with Mpl < 1 MX is much less than that

of systems with Mpl > 1 MX. 3) It is easier to find a small planet in a multiple-planet

system, than it is to find it in a single-planet system. 4) Interactions between giant plan-

ets are expected to excite eccentricities, whereas Figure 2.1 exhibits multi-planet systems

with lower orbital eccentricities. This last effect may be partially explained by the orbital

stability constraint which favors low eccentricity orbits. When a multi-planet system is
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characterized by high eccentricities, it makes the system more unstable and prone, through

time, to planetary collisions and expulsion of planets from the system. Thus, some single-

planet systems may exhibit high eccentricities as a result of ejections of former members

from the system. However, it is important to remember that this finding may be amplified

by a selection effect and small planet discoveries are still limited by instrumentation. A

greater population of Earth size planets might be found in the next future as technology

rapidly advances.

2.3 Methods implemented to discover exoplanets

Some of the most successful methods that have been developed and implemented

for the detection of extra-solar planets are listed below.

i) Transit method (implemented with Spitzer Space Telescope (2005), Corot(2006) Ke-

pler(2009), and (assuming successfull launch) TESS(2016))

As shown in Figure 1.1, the observed brightness of the star decreases by a small

amount when a planet transits in front of it and in or about our line of sight. This

photometric method is particularly effective when employed by orbiting telescopes,

and it can help determine the radius of a planet. The light curves derived from

space-based observations such as KEPLER and the future TESS mission, can be used

to measure the radii and orbital periods of planets to high accuracy. The ratios of

planetary radii to stellar radii are also well measured, except for low signal to noise

transits (e.g., planets much smaller than their stars, those systems for which few tran-

sits are observed, and/or planets orbiting faint or variable stars). This technique,

combined with the radial velocity method as a follow up, can give insights even on
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planetary atmospheric compositions. When a transit occurs, the stellar photons pass

through the upper atmosphere of the planet and, by studying the high-resolution

stellar spectrum carefully, one can detect major constituents of the planetary atmo-

sphere. Additionally, the secondary eclipse (which occurs when the star eclipses the

planet) allows for direct measurement of planetary radiation (light from the planet

can be detected through thermal emission), giving estimates about the planet’s tem-

perature. The transit method has three major disadvantages. First, if the planetary

orbit is not within the Earth’s line of sight, the transit cannot be observed and the

probability of detection is given by the previously presented Equation 2.2. Roughly

10% of planets with orbits of order 3− 10 days have such alignment, and the fraction

decreases for planets with larger orbits. A solution to this problem will be given by

TESS, programmed to scan the observable sky and to find extra-solar planets at a

rate that exceeds that of the radial velocity method. The second issue is related to

planetary sizes. For a given planet transiting its host star, the likelihood of detection

is a decreasing function of the orbital period, ttransit ∝ 1/P 2/3 [Lissauer et al. (2011)].

Third, the high rate of false positives can exactly mimic planetary systems. This last

point will be further discussed in Section 2.5. Finally, it is worth emphasize that only

for transiting planets direct estimates of planetary masses from their observed radii

can be obtained [Charbonneau et al. (2007)].

ii) Transit timing variation method (TTV)

If a planet was previously detected by the transit method, then variations in the

periodicity and duration of the transit can provide an additional tool for the detection

of a multiple-planet system. This method can be used to infer the orbital elements of
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the perturbing planet, or, at least place limits on the presence of additional planets.

TTVs are caused by gravitational perturbations exerted by additional planets, which

cause deviations from Keplerian orbits with predictable periodicity. The successful

analysis of TTVs often occurs in cases where the planets are in mean-motion resonance

as in the case of Jupiter’s moons as described later in Section 3.1. These dynamics can

be particularly difficult to identify and characterize solely from radial velocity curves

because the best fit orbital parameters exhibit degeneracies (multiple solutions).

iii) Gravitational microlensing

The luminosity of a star is influenced by the relativistic effect of the planets mass.

When two stellar bodies are almost exactly aligned, the gravitational field of a fore-

ground star magnifies the light of a background star and, if the former comprises a

planetary system, then that system’s own gravitational field can make a detectable

contribution to the lensing effect. Gravitational microlensing presents two major dis-

advantages. First, lensing events are very brief, and second, an ideal alignment is

highly improbable as the system composed of two observed stars and the Earth are

constantly moving with respect to each other. This method is mainly used to monitor

stars towards the center of the galaxy, as this region of the sky provides the largest

number of background stars.

iv) Astrometry (HST)

This technique uses precise measurements of a star’s position in the sky to observe

how the position changes over time due to the gravitational influence of an orbiting

planetary system. Astrometry dates back to the mathematician William Herschel. In

the late 18th century, he claimed that an unseen companion was affecting the position
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of a star he had cataloged as 70 Ophiuchi, located in the Ophiuchus constellation.

Precisely, he claimed the discovery of the binary system in August 1779, after 1700

observations [Herschel & Dreyer (1912)]. In the 19th Century, this technique was still

implemented visually with hand-written records, but the method has evolved since

then through the use of photographic plates. In 2002, the Hubble Space Telescope

succeeded in using astrometry to characterize a previously discovered planet around

the star Gliese 876 1. One advantage of the astrometric method is its sensitivity to

planets with large orbits. However, long periods require long observation intervals,

ranging form years to decades.

v) Eclipsing binary minima timing

When an eclipsing binary (a 2-star system) is in our line of sight (LOS), the times of

minimum light (occurring when the brightest star is obscured by its companion), con-

stitute a time stamp on the system, much like the pulses from a pulsar (characterized

as a dip in brightness). If a planetary system is present and set in a circumbinary

orbit around both stars, it will be offset around a binary star-planet center of mass.

The periodicity of this offset is indicative of the presence of a planetary system.

vi) Polarimetry

The light emitted by a star is unpolarized, however, when photons hit the atmospheric

molecules of a planet, the light waves can become polarized. Polarimeters can be set to

a very high sensitivity and can sift through unpolarized light coming from seemingly

single stars.

vii) Doppler Spectroscopy

1The actual measurements contained serious errors.
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This method is the most effective at claiming planetary discoveries, and it is re-

sponsible for the characterization of more than 90% of all currently known planets

[Meschiari et al. (2010)]. Because it is also very important to this thesis, it is discussed

in considerable detail in the following section.

2.4 Doppler Spectroscopy: an efficient method to confirm

the presence of exoplanets

The Sun orbits the center of our galaxy at a speed of approximately 250 km/s.

While most of the stars in the solar neighborhood are moving in roughly the same manner,

some are moving more quickly than the Sun, while others are moving more slowly. The

Alpha Centauri system, for example, is headed toward us with a radial velocity of Vr =

−21.6 km/s. The average difference in orbital velocity between neighboring stars is about

20 km/s. Part of this velocity will be in the transverse direction, while the rest is along

the radial line connecting our solar system to the star. A radial velocity (RV) measurement

is the component of the velocity of the star measured along the LOS from the Earth to

the star where most of this radial velocity stems from the natural motion of the star (e.g.

angular rotation and translation in space with respect to our solar system). In addition to

the random motion that a given star has with respect to the Solar system, there is also a

small superimposed component of motion that is generated as the star wobbles back and

forth in response to any planets that are in orbit around it (see Figure 2.2). By carefully

noting the Doppler shift of the stellar lines, it is sometimes possible to measure the speed

of the star in our LOS with a precision down to 1 m/s. For the case of a single planet in



19

(a) (b)

Figure 2.2: The star moves about its center of mass to compensate for the planetary orbit. If the

Earth was located West of the system (left of the page), a positive RV would be collected in (a) and

a negative RV would be observed in (b).

a circular orbit, the system can be visualized by imagining that the star and the planet

are attached to the opposite ends of a rigid rod. The point of balance can be reached

by choosing the correct coordinate of the point much closer to the heavy star than to the

less massive planet. For example, if the star is ten times more massive than the planet,

then the point of balance would lie 10 times closer to the star than it would to the planet.

Thus, the star delineates a circle that is 1/10 times smaller, and which executes in the

same amount of time that the planet takes to complete one circular revolution. If the RVs

collected vary with time, corresponding to movement of the star along our LOS, it could

mean that one or more planets orbit the target. As of 2011, spectrometers can detect

velocity variations down to less than 1 m/s. The HARPS (High Accuracy Radial Velocity

Planet Searcher) instrument, connected to a 3.6 m telescope located at La Silla Observatory

(Chile), and HIRES (High Resolution Echelle Spectrometer), another spectrometer which

is a vital component of the Keck telescopes complex in Hawaii, are examples of excellent
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instrumentation devoted to such detections. This method requires high signal-to-noise ratios

in order to achieve high precision, and is primarily used for stars up to 160 light-years from

Earth [Charbonneau et al. (2007)]. Doppler spectroscopy is readily suited to the detection

of massive planets close to their hosts, but the detection of such bodies orbiting further out

requires many months, if not years of observation. Planets with orbits highly inclined to

our LOS are more difficult to detect because the change in velocity of the incoming star’s

photons is minimal.

Back in the 1950s, the Russian-American astronomer, Otto Struve, foresaw the

future use of powerful spectrographs to detect distant planets. He predicted that small

Doppler shifts of light emitted by a star, due to the constant and continuous change of

its radial velocity, could be detected by sensitive instrumentation. These motions would

be identified on a spectrographic image as small shifts towards longer wavelengths (red

color) or shorter wavelengths (blue color) of the star’s emitted photons. During his life-

time, technological limitations kept the detection of radial velocities in the 1000 m/s range

or greater. This precision was practically useless for the detection of extra-solar planets

[http://en.wikipedia.org/wiki/Otto Struve].

2.4.1 How Doppler shift is measured

Until the beginning of the 1990s, RV measurement techniques rarely exceeded

a precision of 200 − 500 m/s. The wavelength reference (WR) was taken at a different

time from observation and often transversed a different light path than that of the stellar

spectrum. One solution proposed was to use RVs collected from standard stars. This system

avoided the problem of different light paths for the reference and stellar spectra, but the
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Figure 2.3: First (top): the template iodine cell spectrum. Second: the template of a stellar spec-

trum. Third: the points represent observation of the target through the I2 absorption while the solid

line is a model of the observation. Fourth (bottom):10 times the difference between the model and

the observation corresponding to a 0.4% rms between model and observation [Butler et al. (1996)].

sample observation was still made at a different time and there was always the danger that

the standard star was subject to radial velocity jitter, arising either from stellar variability, a

binary companion, or other confounding factors. However, a new solution first considered in

1973 by Griffin & Griffin at the McDonald Observatory and then successfully implemented

with high precision in 1994 by Steve Vogt at the Keck HIRES Spectrometer. The new

technique consisted of minimizing the instrumental errors by superimposing a WR on top

of the stellar observation. This task is accomplished by passing the incoming light through

an absorbing gas prior to its entrance into the spectrograph. The gas produces its own set

of absorption lines against which velocity shifts of the stellar spectrum can be measured.

Instrumental shifts affect both the WR and stellar spectrum equally and a high degree

of precision can be achieved. The precision of this method is limited by pressure and

temperature changes of the earth’s atmosphere as well as by Doppler shifts of the element’s
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lines due to winds. These errors can be eliminated if the observer has some control over

the absorbing gas. A main improvement has been applied by enclosing a gas in a cell that

can be temperature and pressure regulated. The use of such a method was first applied

to astronomical research by Campbell and Walker in 1979. They chose hydrogen fluoride

(HF) as the absorbing gas. They demonstrated, through more than a decade of use, that

the HF cell could measure relative radial velocities with a long term precision of about 13

m/s. Although the HF cell proved capable of achieving the precision needed for detecting

Jovian-sized planets around Solar-type stars, there were a number of disadvantages in using

such a device [Kürster et al. (1994)].

1) The path length of the cell that is required to produce reasonably deep HF absorption

lines is about 1 m and it can be a problem if space in front of the spectrograph slit is

limited.

2) HF has significant pressure shifts and must be regulated to a rather high temperature

of 100℃.

3) It is a highly reactive chemical, and prolonged exposure of the cell to HF will destroy

the container walls. Consequently, the absorption cell must be made of inert material

and has to be refilled before each observing run.

4) At last, HF gas is fatal to humans who have been exposed to it.

Gaseous molecular iodine, I2, is a benign alternative to HF and the advantages of using

this substance in an absorption cell are numerous.

1) The vapor pressure is high enough (≈ 0.5 torr) to produce significant absorption at

room temperature in a cell 10− 20 cm in length, instead of the 1 m long HF cell.
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2) I2’s pressure shifts are much smaller than HF’s and this results in a very stable

reference spectrum.

3) Iodine gas does not react with glass so that the construction of the cell is relatively

easy and can be done by any glassblower.

4) A fixed number of I2 molecules are permanently sealed in the cell for its entire lifetime,

so there is no need to refill it prior to each observation.

5) Its spectral region is rich of extremely narrow lines starting at about 4800 Å and ends

near 6000 Å.

An iodine absorption cell consists of a sealed glass bottle with a small amount of I2 crystals

that is placed into position directly in front of the slit. When heated to a temperature

above 35℃, the iodine sublimes and the gas produces an absorption spectrum on the beam

from the telescope as it enters the spectrometer. The absorption spectrum yields a very

stable zero-velocity reference spectrum superimposed on the spectrum of the object being

observed as shown in Figure 2.3. The Iodine cell is sealed and temperature controlled to

50±0.1 ℃ such that the column density of Iodine remains constant. A block of the spectrum

containing the Iodine region is divided into ≈ 700 slices of 2Å each [Meschiari et al. (2010)].

The final measured velocity is the weighted mean of the velocities of the individual slices. All

radial velocities have been corrected to the Solar system barycenter, but are not related to

any absolute radial velocity system and are therefore “relative” radial velocities. Although

this system has been able to detect RVs with a precision of 1 m/s, through measurements

obtained at Keck (Hawaii), AAT (Australia), and La Silla (Chile) telescopes, systematic

errors such as detector imperfections, optical aberrations, effects of under-sampling the
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Iodine lines, photon statistics, and stellar jitter must be taken into consideration.

2.4.2 Mathematical expression of radial velocity data

The Systemic Console allows for a choice of various modeling schemes. In particu-

lar, if the N planets do not experience significant dynamical interactions during the time in

which a set of RVs are collected, the RV variation of the star can be represented by a sum of

N Keplerian orbits, each described by its planets’ orbital elements [Meschiari et al. (2009)].

The RV Curve will be given by

υRV (t) =
∑

N

KN [cos(θN + ωN ) + eN cosωN ] =
∑

N

υRV N
(t) + CTel, (2.4)

where the one singly collected RV for a star that includes a perturbing planet on a Keplerian

orbit is given by

υRV N
(t) = KN [cos(θN (t) + ωN ) + e cos ωN ]. (2.5)

The orbital parameters presented in Equation 2.4 and 2.5 are K, the RV semi-amplitude,

θ, the true anomaly ( the angular parameter formed by the periapsis, the star’s and the

planet’s positions, or also the angular parameter that defines the position of a body moving

along a Keplerian orbit), ω, the longitude of periastron, and e, the eccentricity. The presence

of an unknown constant velocity offset parameter, CTel, in Equation 2.4, is due to the fact

that RV observations can be sampled from telescopes at different locations and different

times. However, even though no information about planetary existence can be provided by

the latter parameter [Ford (2005)], the Systemic Console allows sources with different zero

point velocity offsets to be combined and facilitate a better fitting. Other essential orbital

parameters that need to be assessed are the period, P , the mass, m, and the mean anomaly,
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MA. When the modeling RV curve equation is in place, the orbital parameters of the ith

planet can be derived.

2.5 False positives

The detection of exoplanets through photometric transits, as explained in Section

2.3, suffers from a very high rate of biases and false positives. The two most notable

observational biases are 1) that the probability of transiting decreases with increasing orbital

period and 2) for a given size planet transiting a given star, the duty cycle (the fraction of

the orbit spent in transit) is a decreasing function of orbital period, because the fraction of

time that a planet spends in transit is proportional to P 2/3 [Lissauer et al. (2011)]. Other

factors which have which have strong biasing effect on the detectability of transiting planets,

or alternately, which can generate false positives are:

i) Eclipses of planets with smaller orbits

Photometric transit searches are strongly biased in favor of planets with small orbits.

Such objects have a greater probability of going through periodic eclipses.

ii) Transits of planets with smaller orbits

Larger orbits imply longer orbital periods and fewer chances for transits to occur and

therefore small orbits are more readily detected by transit surveys. However, multi-

site surveys, such as the second phase of the TESS project, can monitor a given field

for several months and have more chances to frequently achieve a positive detection

nearing 100% for periods up to 6 days.

iii) Stroboscopic effect
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A stroboscopic effect can afflict single-site surveys, favoring orbital periods near integer

numbers of days and may account for the tendency of the longer period transiting

planet periods to clump near 3 and 3.5 days [Charbonneau et al. (2007)].

iv) False signals

Most transit surveys, including the current KEPLER mission, are characterized by

a high rate of candidate systems that display light curves precisely mimicking the

sought-after data. Some of this collected data results from setting an overly-permissive

detection threshold. In these cases, the algorithm used will select even events that

result purely from photometric noise [Charbonneau et al. (2007)].

v) Blending

If the field of view is crowded, erroneous photometry can result when light signals

from nearby stars leaks in the photometric aperture.

vi) Eclipsing multiple star systems

The overwhelmingly majority of false positives are expected to come from eclipsing

binary or multiple star systems. These eclipses are generated when fainter stars are

in the same system of the target or stars that are the faint background of foreground

objects within the camera aperture.

vii) Grazing eclipses

Grazing eclipses in binary systems (two star’s disks graze each other without ever

overlapping) can result in transit-like signals with depths and durations that resemble

planetary ones.
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3

Keplerian Integration and

Uncertainty Estimates

3.1 Keplerian method of integration

The gravitational force that the star exerts on the planets is not the only effect

to consider. The planets also interact with one another, providing perturbations. In par-

ticular, if the planets repeatedly encounter one another at nearly the same point in their

orbits, their mutual gravitational pull will tend to add up over time. A classical example of

gravitational resonance occurs between Jupiter’s moons Io, Europa, and Ganymede. Io or-

bits Jupiter twice as frequently as Europa, and Europa orbits Jupiter twice as frequently as

Ganymede. This 4:2:1 orbital ratio is maintained by the mutual gravitational tugs exerted

by the moons. If we assume, however, that the planetary motion consists of independent

elliptical orbits, the model RV curves are computed very quickly by solving Kepler’s Equa-

tion. The Keplerian parameters, responsible for the planet’s ID, can be extrapolated from
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the RV data. There are 5N+1 parameters that need to be fit: 1) period, Pi, 2) eccentricity,

ei, 3) mean anomaly, M i, 4) inclination of the planetary orbit, ii, 5) semi-amplitude of the

RV signal, Ki, and the stellar mass, m⋆. The mass of a planet, mi, can be determined from

the RV semi-amplitude the following way:

K3
i =

2πG

Pi(1− e2i )
3/2

m3
i sin

3 ii
(m⋆ +mi)2

, (3.1)

[Wright & Howard (2009)] which becomes

Ki =

(

2πG

Pi

)1/3 mi sin ii
(m⋆ +mi)2/3

1
√

1− e2i

. (3.2)

The planet’s mean anomaly, M i, is a Keplerian parameter that needs to be known before

implementing Equation 3.2. The planet’s true anomaly, θi(t), given by Equation 3.3 and

present in Equations 2.4 and 2.5, is related to the planet’s eccentric anomaly Ei(t) as a

function of time.

tan

[

θi
2

]

=

√

1 + ei
1− ei

tan

[

Ei

2

]

. (3.3)

In turn, the eccentric anomaly is related to the planet’s mean anomaly M i through Kepler’s

equation [Wright & Howard (2009)]

Mi(t) = Ei(t)− ei sinEi(t) = 2π(t− tp,i)Pi, (3.4)

where t is the time of RV detection, tp is the time of periastron passage of the planet i,

and the other parameters present have been specified in previous equations. The true and

eccentric anomalies can be visualized and better understood by looking at Figure 3.1.

When revisiting Equations 3.2, 3.3, and 3.4 there are three parameters left that

cannot be derived analytically, but need to be fitted at best with many trials: the period,

Pi, the eccentricity, ei, and the time of periastron passage, tp,i. The use of an algorithm
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Figure 3.1: The eccentric anomaly is identified by E and the true anomaly by θ. S symbolizes the

position of the star, while N is the planet, and p is the location of periapsis

such as the Levenberg-Marquardt or the Markov Chain Monte Carlo fitting routines, both

available in the Systemic Console and later discussed in Section 3.2, can be used for this

purpose.

3.2 Uncertainties

In the quest for ever-smaller planets, proper error analysis is key. This happens

frequently at the threshold of detection, where signal-to-noise ratios are low. Indeed, once

the best fit parameters have been identified, the estimation of their uncertainties is of

equal or greater importance to the measurement of the orbital parameters themselves as

evidenced by the recent controversies surrounding Gliese581 g . The Systemic Console

currently offers several tools for error estimation, including a Levenberg-Marquardt (LM)

minimizer, a Bootstrap re-sampler, and a Markov-chain Monte-Carlo (MCMC) estimator.

The Bootstrap Monte-Carlo works well when little is known about the under-

lying process, or the nature of the measurement errors [Press et al. (2007)]. It initializes by
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using the collected n RVoriginal data points and generated orbital elements. Successively,

it generates any number of new synthetic data sets branching out from the original one

and containing m (where m < n) original data points. Because of the replacements, the

outcome is not the original data set, but a new set with a random fraction of the original

points, typically 37% (≈ 1/e), replaced by newly generated ones. These new synthetic

sets are subjected to the same estimation procedure of the original one and generate new

orbital parameters, ELSsynth. The synthetic orbital parameters will be distributed around

ELSoriginal, just as ELSoriginal is part of the distribution around ELStrue, the true orbital

parameters. A considerable number of bootstrap iterations can generate an estimate of

uncertainties based on the obtained standard deviations in the orbital parameters of all the

present planets. To aid in the analysis, the Systemic Console provides scatter plots of the

correlations between the uncertainties of the orbital parameters.

The Markov-chain Monte-Carlo is an alternative technique for estimating un-

certainties and it works in a way that is qualitatively different. The goal of the MCMC

method is to generate a chain of states (chain part), or sequence of sets of parameters

ELSn, that are sampled from a desired probability distribution f(x), provided an initial set

of parameters ELS0. The Monte Carlo aspect of MCMC simulation refers to randomness

in the generation of each subsequent state. The Markov property specifies that the prob-

ability distribution for the determination of ELSn depends on ELSn−1 but not previous

states such as ELSn−2, ELSn−3, ... [Press et al. (2007)]. Bayesian methods, often imple-

mented using MCMC, provide a powerful way of estimating the parameters of a model and

their degree of uncertainty. For application to RV measurements and parameters determi-

nation, the observational errors are believed to be very nearly Gaussian with accurately
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estimated variances. Thus, if the data are generated by the model specified by ELS, then

the probability of drawing the observed values, Pr(RVoriginal|ELS) ( a prior distribution),

is roughly proportional to e−χ2(ELS/2). If we choose a uniform previous model ELS with

Pr(ELS) ∼ 1, then the probability of obtaining specific parameters given the observed RVs,

Pr(ELS|RVoriginal) (a posterior distribution), is also roughly proportional to e−χ2(ELS/2)

[Ford (2005)]. MCMC is important for long-period planets and multiple-planet systems,

where there are multiple free, unknown parameters and whose values can be drastically

replaced to still obtain similarly good fits. The RV observations of such systems can result

in large valleys in the χ2(ELS) space that permit a broad range of parameter values. While

this type of χ2(ELS) space presents difficulties for local minimization routines, the MCMC

method is able to jump between these local minima and accurately calculate the posterior

probability distribution for model parameters, Pr(ELS|RVoriginal). In summary, MCMC

has the following advantages compared to other methods:

1. The results can be interpreted by examining the posterior distribution for a given

prior and the set of RVoriginal.

2. In some cases the resulting distribution can be efficiently updated to account for

additional RV observations, or alternative priors, provided they do not greatly alter

the posterior distribution.

3. Calculating the next step in a Markov-chain is much faster than performing an addi-

tional minimization with re-sampled data.

4. Computationally, MCMC is more efficient than other techniques, particularly for high-

dimensional parameter spaces such as multi-planet systems.
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The Simulated Annealing (SA) or global minimization is a technique that

is suitable for optimization problems, especially ones where a desired global extremum is

hidden among many poorer, local extrema, which is often the case for the Doppler RV

problem. In practice, it is a more dynamic version of methods such as LM minimizer, and

its goal is to reduce the risk of the solution being trapped in a local minimum [Ford (2005)].

At each iteration, random perturbations are applied. These perturbations are initially large

and are then gradually reduced. To understand this methodology one can picture the

process of crystallization. The material is cooled so slowly that atoms within have time to

geometrically align themselves and create a flawless crystalline lattice. By contrast, when

a material is “quenched”, that is, rapidly cooled, there is ample opportunity for defects to

remain in the final structure. The same idea pertains to SA and, provided that the perturber

is reduced sufficiently slowly, this method can convert a local minimization algorithm into

a global one.

Refitting to synthetic data is another method used to estimate the uncertainty

in orbital parameters fitted to the observed data. The same fitting technique is repeatedly

applied to many sets of simulated data. Each set of simulated data is meant to represent

a possible set of measurement values. If the same fitting procedure is applied to the actual

data and each simulated data set, then one can obtain the distribution of best-fit parameter

values. This method will be implemented and later explained in Chapter 5 to demonstrate

the nature of the scripts built during this research.
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3.2.1 Least Square Fitting (χ2)

How does one know whether a particular planetary model provides a good fit

to the radial velocity data? In general, the better the job that the model curve does of

running through the data, the better the fit. Data, however, are generally not exact, but

rather subject to measurement errors such as noise and/or stellar jitter. Observational

data never exactly fit the model that is being used, even when that model is correct. For

this reason, it is necessary to assess whether or not the model is appropriate, or in other

words, to test the goodness of fit against some useful statistical standard. To be useful, a

fitting procedure should provide three important components: parameters, error estimates

on the parameters (or a way to sample from their probability distribution), and a statistical

measure of the goodness of fit. When the third item suggests that the model is an unlikely

match to the data, then the first two items are meaningless. In the Systemic Console, the

goodness of fit is quantified by two numerical measures. 1) The root mean square (RMS) of

the fit corresponds to the square root of the average (mean) of the squares of the velocity

differences between the actual radial velocity measurements and the model curve. 2) The

Reduced Chi Squared (χ2) is a related statistical measure that gives stronger weight to

points that have smaller error bars. In general, the best fit will have a χ2
reduced ≈ 1. The

error bars on the RV data points correspond to estimates of the uncertainties introduced

at the telescope by the measurement process and, importantly, they do not include another

source of error known as the stellar jitter. The latter is caused by the star’s photosphere

convective eddies, spots, plages, granulation and stellar oscillations. These phenomena alter

the shape of the stellar spectral lines, injecting random velocity shifts (RVs) that may mask

or mimic planetary signals. For stars similar to the Sun (G spectral type), the stellar jitter
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generally has a value in the neighborhood of 3− 5 m/s [Wright et al. (2007)].

Now, suppose there is a set of n, RV data points, υobs(ti|ELSk) where ti is the

time of the ith observation with explicit dependence on the m orbital parameters, ELSk,

and where i = 1, ..., n and k = 1, ...,m. The purpose is to establish if these data points are

well described by a modeling function y = f(υmodel). Assuming that the uncertainties from

single observations are expected to closely follow a normal distribution, the latter is given

by

y =
1√
2πσi

exp

[

−(υmodel − µi)
2

2σ2
i

]

, (3.5)

where µ is the expectation value or location of the peak, σ is the standard deviation, and

σ2 is the variance, a measure of the width of the distribution (see Figure 3.2). To evaluate
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Figure 3.2: In a normal distribution, 1σ accounts for ≈ 68% of the RV data set, while 2σ for

≈ 95%, and 3σ for ≈ 99.7%. A small σ indicates that the data points tend to be very close to the

mean, whereas a large σ indicates that the data points are spread out over a large range of values.
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the goodness of fit for our given model, y, we can calculate the χ2
RV statistic:

χ2
RV (υ) =

n
∑

i=1

[υmodel,i − υobs(ti|ELSk)]
2

σ2
i

, (3.6)

where σi is the observational uncertainty of the ith radial velocity observation. In particular,

the Systemic Console implements a minimization of a fit through the Reduced Chi Squared

Statistic [Meschiari et al. (2009)] as follows:

χ2
RV Systemic

(υ) =
1

nRV −mELS

n
∑

i=1

[υmodel,i − υobs(ti|ELSk)]
2

σ2
i

. (3.7)

In this case, m = 5 : period, mass, mean anomaly, eccentricity, and longitude of periastron.

Parameters minimization, is obtained by finding the minimum, χ2
min. The new orbital

elements are identified as the best fit model, but it is worth remembering that finding

the set of parameters that minimizes χ2 can be mathematically exhausting, particularly

for multiple-planet systems. For this task, computer algorithms can save much time and

eliminate random errors.

3.2.2 Levenberg-Marquardt (LM) method for local minimization

The Levenberg-Marquardt, or local minimization method is an iterative minimiza-

tion algorithm (a process repeated with the aim of approaching the desired result) and it

has become a standard non-linear least-squares routine. LM is useful for finding the best

fitting parameters of a non linear model to a set of data for which plausible starting guesses,

n0 , have already been established [Press et al. (2007)]. Once an initial, reasonable estimate

of the orbital parameters is available, it can be used to refine them by minimizing the χ2.

Unfortunately, even though the χ2 space can have many local minima, the LM algorithm

will identify only a single local minimum [Ford (2005)]. According to “Numerical Recipes
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in C” by Press et al. (2007), given an initial guess for the set of fitted parameters n0 , the

recipe is as follows:

• Compute the χ2
RV (υ) as shown in Equation 3.7

• Pick a small value for λ (e.g. λ = 0.001).

• Solve the linear equation
m
∑

l=1

α′

klδELSl = βk. (3.8)

• If χ2
RV (υ + δυ) ≥ χ2

RV (υ) then λ should be increased by a factor of 10 and Equation

3.8 resolved.

• If χ2
RV (υ+ δυ) ≤ χ2

RV (υ), then λ should be decreased by a factor of 10 and Equation

3.8 resolved.

Equation 3.8 is the key formula of the Levenberg-Marquardt method and the calculations

to derive it unfold as follows.

If the original fit is ELSk, where k = 0, ..., 5 identifies the orbital parameters to

minimize, then its χ2
RV (υ) can be used as a starting point. The gradient of χ2 with respect

to ELS is vector that indicates the direction of steepest descent and is given by

∇χ2
RV (υ) =

∂χ2

∂ELS
= −1

2

n
∑

i=1

[υmodel,i − υobs(ti|ELS)]

σ2
i

∂υobs(ti|ELS)

∂ELSk
= −2βk, (3.9)

where (ti|ELS) is the ith observation obtained at time t and if ∇χ2
RV (υ) = 0 then χ2

RV (υ)

is already at its minimum. The partial derivative with respect to ELS of Equation 3.9 can

also be thought of as the curvature of the function and is given by

∂2χ2

∂ELSk∂ELSl
= 2

n
∑

i=1

1

σ2

[

∂υobs(ti|ELS)

∂ELSk

∂υobs(ti|ELS)

∂ELSl
− C

]

= 2αkl, (3.10)
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where l is the next iteration and generates a new, improved set of parameters ELSl. In

Equation 3.10, the term C can be ignored as it is the second derivative of ∂2χ2 multiplied

by a random ± measurement error of each point which cancels out when summed over i.

Therefore we are left with

2αkl ≅ 2

n
∑

i=1

1

σ2

[

∂υobs(ti|ELS)

∂ELSk

∂υobs(ti|ELS)

∂ELSl

]

, (3.11)

and

αkl =
1

2

∂χ2

∂ELSk∂ELSl
, βk = −1

2

∂χ2

∂ELSk
and βl = −1

2

∂χ2

∂ELSl
. (3.12)

Sufficiently close to the minimum, we expect the χ2
RV (υ) function to be well approximated

by a quadratic form. However, this representation might be a poor local approximation

to the shape of the function that we are trying to minimize. In this case, the suggested

method is to take a step down the gradient

ELSl = ELSk − constant×∇χ2(ELSk), (3.13)

and based on Equations 3.9, 3.11 3.12, and 3.13 we have

δELSl = constant× βl, (3.14)

where the constant is found by looking at the dimensions of δELSl and βl and therefore

constant = 1/λαll where λ is a non-dimensional fudge factor that can be ≫ 1, ≈ 1, or ≪ 1.

Putting it all together Equation 3.14 becomes

δELSl =
1

λαll
βl or δELSlλαll = βl. (3.15)

Once more, the equation we need to solve for exactly displayed as in Equation 3.8 is

m
∑

l=1

α′

klδELSl = βk, (3.16)
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and can be solved with the help of Marquardt’s insight by recognizing that

if k = l → α′

kl = αll(1 + λ) and if k 6= l → α′

kl = αkl. (3.17)

While there is a degree of ambiguity in the choice of the weighing factor λ, this is not a

concern in the vicinity of a solution, where the contribution from RVs is approximately

equal for λ = 1. Far from the solution, χ2
RV (υ) can become very large due to possible

transits. However, this effect can be tamed by fitting one planet at a time and reducing the

initial χ2
RV (υ) [Meschiari & Laughlin (2010)].

In conclusion, iteration can stop after few occurrences of χ2 decreasing by a negli-

gible amount (e.g. > 10−3). If χ2 increases more than trivially it means that λ has not yet

adjusted itself optimally. As noted before, when fitting for parameters that characterize a

non-linear model, the χ2 space might not have only a single minimum. The LM method

offers no insight into finding the global minimum. It is just a downhill (gradient-based)

search and it should be regarded as the resource for achieving a final optimization of the

parameters, preceded by more global methods, such as MCMC or SA, for manipulating the

system into the correct basin of convergence.
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4

Synthetic Software Overview

Two main problems occur when analyzing extra-solar planetary data: 1) error

estimates within the non-stationary, significantly varying signal-to-noise RV data sets can

be underestimated, and 2) there is no continuous, up-to-date library of known extra-solar

planetary fits associated with a strictly uniform analysis. The Systemic Console collabora-

tion been established to address this problem. The Console is an all-in-one software package

built with the purpose of analyzing and combining multi-parameter fitting of Doppler RV

and transit timing observations [Meschiari et al. (2009)]. The Systemic Console is freely

downloadable at http://www.ucolick.org/~smeschia/SystemicConsole. The Console

includes a Graphical User Interface (GUI) and a library of routines which are very useful to

write scripts in a non-interactive mode. An extensive and well-explained list of Javadocs is

provided as well as a link to useful tutorials on how to use the GUI. The program is written

in the Java programming language, simplifying cross-platform portability.

http://www.ucolick.org/~smeschia/SystemicConsole
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Figure 4.1: The Console GUI displaying the star HD187123’s loaded RVs. The sinusoidal wave

delineates and covers almost perfectly the RV data, suggesting that the fit is good. On the right

hand side, the χ2 and RMS are displayed. On the bottom, the two sets of planetary parameters are

listed.

4.1 GUI of the Systemic software (Graphical User Interface)

The GUI, shown in Figure 4.1, can display

1. RV curves and transits which can be folded to a chosen period (on the upper left),

2. orbital parameters of the chosen planetary architecture (on the bottom),

3. orbital figures of each of the chosen planets (not displayed in the above figure),

4. stellar velocity zero-point offsets (on the upper center),

5. summary statistics associated with error analysis such as RMS and χ2 (on the upper

right),
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6. a Lomb-Scargle (LS) periodogram which can also display the periodicities of the resid-

ual RVs after a primary selection (see Figure 4.2),

7. minimization schemes such as, but not limited to Levenberg-Marquardt (LM), or

Simulated Annealing (SA) (these are controlled with the Polish button located on the

left of the upper row and in the scripts tab respectively),

8. integration routines such as, but not limited to Keplerian, Runge-Kutta, or Bulirsch-

Stoer N-body integration (control buttons located on the right side of the upper row

the integration drop-down menu),

9. error estimations algorithms including Bootstrap, Resampling, and Markov Chain

Monte Carlo (MCMC) (under the scripts tab).

The Console features many other useful tools for data analysis. One of them allows the

Console to perform long-term integrations that can help decide whether a planetary system

is stable or not. This utility is accessed via Orbital Evolution & Stability under the View

menu. A variety of integration schemes are available, and the results can be plotted. The

integration is performed and displayed in real time. As a rule of thumb, if the orbital

elements of the planets are varying only slowly, over a period of time in the order of 103

years, then the system is recognized as stable.

Another important feature of Console is the possibility to phase fold the RV data

to a chosen period. This task can be executed by either manually entering a selected number

of days through the GUI and then selecting the Fold to period button from the drop-down

menu or by selecting the most probable period displayed in the Periodogram window as

shown in Figure 4.2. The tallest peaks in the periodogram are used as guesses for the
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fitting algorithm where the dominant planet (possibly identified by the tallest peak) can

be fit for alone. Its signal is then subtracted from the data, and additional planets (or

peaks) can be searched for among the residuals. This process can then be repeated until

all of the planets have been identified, and then a full, multi planet fit on the original data

starting at the values found for the individual planets. This is a graphical interpretation of

Figure 4.2: Lomb-Scargle Periodogram of the HD187123 RV set shown in Figure 4.3 displaying

from top to bottom the most probable periodicities. The relative Powers and analytical False Alarm

Probabilities (FAP) at levels 101 (long dashed), 102 (short dashed), and 103 (dotted) are overlaid.

a Fourier method called the Lomb-Scargle (LS) periodogram. It is an algorithm for time

series analysis of unevenly spaced data [Meschiari et al. (2009)] and one of the means used

to identify the possible periodicities of prospective planets.

4.1.1 Introduction to Fourier technique

The choice of a Fourier technique to analyze the RV data is an appropriate one

because it consists of observations that vary with time. A data set, composed of n discrete

observations, taken at times ti, are necessarily limited in length. Both data length and
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data spacing have important limiting effects on the accuracy with which Fourier analysis

can be performed. The Fourier technique adopted in the Systemic Console applies is well-

suited to data that has been unevenly sampled. A deterministic model assumes a basic

predictability and repeatability, which is the signature character of classical, non-quantum

physical processes. A discrete versions of the Fourier transform where the integration (or

summation) limits are finite rather than infinite is appropriate for discrete data. A discrete

Fourier transform is defined as

F (υ) =

n
∑

i=1

f(ti)e
i2πti , (4.1)

where f(ti) is a pure cosine wave of frequency v0 and the Fourier transforms F (v) has

amplitudes that are significantly different from zero only in the immediate vicinity of v =

±v0. A Fourier analysis is able to detect the presence of a frequency in the data and, with

some care in the normalization, to determine its amplitude. In the case of a multiply periodic

function, such as in the case of the LS periodogram, with frequencies v0, v1, v2, ...,etc., the

transform will be large in the vicinity of v = ±v1,±v2, ...,etc., and, ideally, the analysis

can detect the presence of each of these frequencies independently, and determine their

amplitudes. In practice, this ideal cannot quite be realized because of the finite data length

and the discrete sampling. The interference between frequencies is the limiting factor to a

straight forward implementation. Two are two types of such interference: 1) interference

from nearby frequencies, which is described by a spectral window, δ(v), and is primarily a

product of the finite length of the data, and 2) interference from distance frequencies, which

is called aliasing, and is a product of the data spacing. δ(v) is a function only of v and the
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times of observation ti
1

δ(v) =

n
∑

i=1

ei2πvti . (4.2)

In practical computations it is convenient to use instead a corresponding spectral window

γ(v) =
δ(v)

n
, (4.3)

because this variable returns a normalized spectral window, γ(0) = 1. Thus, if F (v) is a

series of delta functions, corresponding to a multiplicity of periodic functions, then γ(v)

will consist of a series of spectral windows centered on the various frequencies present. The

signature of the data distribution is all contained in the spectral window, γ(v). A plot

of the amplitude of γ(v) versus frequency shows 1) a reasonably well defined central peak

at v = 0 and 2) some subsidiary peaks corresponding to peculiarities in the data spacing.

For example, Figure 4.2 shows the effect of having uneven data spacing. The spectral

window obtained for the given series of observations shows the presence of a sharp peak at

frequency v0 = 1/3.0966 days. If another moderate frequency was present in the data at va

(e.g. va = 1/3810 days), an interference between the two frequencies would arise in the data

spacing. Thus, there should be subsidiary peaks (aliases) in the transform at frequencies

v = va±v0. However, in this specific case, the weak signal obtained by the period Pc = 3810

days does not produce any relevant subsidiary peaks.

4.1.2 A practical example: system HD187123

The year 1998 brought the announcement of a M sin i = 0.5 MX planet in a three-

day orbit around HD 187123 [Butler et al. (1998)]. This star is constant in brightness

[Robb R.M. et al. (1999)] and is a close solar analog: M⋆ = 1.1 M⊙ and Teff = 5810K ≈
1if the data points were to be continuous, then δ(v) would be a Dirac-Delta function



45

Teff,⊙. In 2007, a second outer companion was announced with orbital period > 10 yr

[Wright et al. (2007)]. Assuming that there is no linear trend or detectable third planet in

the system, the data constrain HD187123c to have P = 10.4± 1.2 yr, e = 0.25± 0.03, and

M sin i = 2.0 ± 0.3 MX. The system can be analyzed using the tools built in the Systemic

Console and utilizing both the older data from 1998 and the latest collected RVs presented

in 2007. This planetary system can be loaded and analyzed through the GUI. First, the

RV data is selected and loaded from the datafiles folder, using the ⋆ button located at the

upper left corner. The RV data will be displayed as shown in Figure 4.3. Specifically in

this case, the set chosen has been modified to allow the introduction of more up-to-date RV

data since the recent observations, made at the Keck telescope, have enabled the discovery

of the second planet. The most recent RVs can be found at

http://iopscience.iop.org/0004-637X/693/2/1084/apj_693_2_1084.tables.html

[Wright et al. (2007)], and are shown in Figure 4.3 together with the older collected data.

The easily observable peaks of its LS periodogram, (Figure 4.2), correspond each to a

period with a given Power and False Alarm Probability (FAP). If the period of 3.0966 days,

accompanied by the highest Power and lowest FAP (1.21×10−31) is selected, a new planetary

system is created. The RV set can now be folded to this new period and is shown in Figure

4.4. At this point, the GUI can further be further employed to reshape the sinusoidal

function created and exactly trace and overlap the set of folded RVs. If a slight eccentricity

is added to the orbital parameters, and the mass is set Mb ≈ 0.5 MX the sinusoidal model,

begins to match the delineated curve formed by the collected RVs. By adding another planet

with a mass of Mc ≈ 2.0 MX, period of Pc = 3810 days, and eccentricity of ec = 0.25, the

fit seems to improve drastically. The RV data, however, suggest that the time of the first

http://iopscience.iop.org/0004-637X/693/2/1084/apj_693_2_1084.tables.html
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Figure 4.3: 65 RVs collected by the Keck/HIRES telescope spanning 8 years (blue), 57 RVs

collected by the ESO/Elodie telescope spanning 5 years (green), and 76 new RVs collected up until

August 2007

Figure 4.4: The same set of RVs shown in Figure 4.3 has been folded to a period of 3.09 days and

clearly shows a sinusoidal shape.
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measurement did not occur at the maximum of the velocity cycle. An improvement can be

obtained by adjusting the mean anomaly slider in the GUI (see Figure 4.5). This feature

slides the modeling curve to the left or to the right without changing its shape.

Figure 4.5: The bars shown appear when one or more planets are added to the given RV set after

selecting the most probable period from the periodogram

4.2 Location and organization of the code

The Console can be used in two different modes: through the GUI as explained

in Section 4.1 or through scripts that can also be available in the GUI, but do not strictly

depend on it. The latter is the most effective mode for developers and for “no frills”, straight

forward implementation. At the same web address, a complete guide to the Javadocs needed

to understand the already existing scripts and to write new ones can be found. After the

Systemic Console is downloaded, the compressed folder will contain two options: a folder

for MAC OS and a folder for WINDOWS/LINUX OS. Each of these folders contain:

1. A Console.jar file through which the scripts and the GUI must be loaded.

2. A datafiles folder where all RV data is stored in .vels and .sys files.

3. A lib folder containing all the pertinent java libraries.
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4. A fits folder where all the .fit files will be eventually collected and saved.

5. A altnames.txt file containing an extensive catalog of approximately 1500 candidate

stars that could host a planetary system.

6. A scripts folder containing some of the scripts used by the Systemic Console, but not

all as the full code is only available to the developers involved.

The scripts are key to understanding the code. The first one, derivefit.conscript, can be

called directly from the GUI (as all other scripts) when RV data is loaded. It will examine

and use the most prevalent peaks in the LS periodogram and residuals and, after evaluating

their RMS, will use these values as starting guesses for the planetary masses. For each planet

found, it will automatically perform a Keplerian integration, then activate a Levenberg-

Marquardt (LM) minimization routine (explained in Section 3.2.2), and finally update the

GUI as it moves forward in the iterations. The other script available in this folder is

genSystems2.conscript, which was written to generate synthetic datasets. After a set of

orbital elements is specified, the code generates a file containing an array of synthetic RVs

(.vels file), a file containing an array of observed transits (.tds file), and a file containing a

summary of star’s mass, RVs and transits (.sys file). Finally, when running one of these or

any other Console scripts through a terminal shell, the command must be entered where

the Console.jar file is: java -jar Console.jar [location of the script]/[script].conscript.

4.2.1 .vels, .sys, and .fit files

The folder datafiles, contains one or more sets of RV data, collected in the past

25 years, for each of the stars listed in the altnames.txt file. These files, identified by the

characteristic “.vels” suffix, are named after the star and the telescope that collected the
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RVs and contain an array composed of three columns. Each line lists the Julian date of

the measurement, the RV measurement, and the σ value (or standard deviation from the

mean) respectively. The “.vels” files are then grouped together in a “.sys” file that list the

star’s mass (compared to solar masses, M⊙) and the .vels files available. The “fits” folder

is empty at first, but as new planetary systems are created, it will get filled with “.fit”

files. These files list the orbital parameters of the guessed planetary system and gives other

specifications in the following order:

1 The first Julian Date of observation.

2 Identification of the “.vels” and “.sys” files used and to which folder they belong.

3 The relative RV offset as briefly explained in Section 2.4.2.

4 The planets’ periods, masses, mean anomalies, eccentricities, longitudes of periastron,

inclinations, nodes, and radii.

Table 4.1 is an excerpt of a .vels file displayed RVs of the star HD187123 and collected at

Keck I, Mauna Kea, Hawaii.
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Julian Date (JD) RVOrig(m/s) σOrig

2450805.7017 -12.30 2.00

2451009.9419 -27.00 2.20

2451011.8744 -8.50 2.20

2451012.8400 -49.90 2.70

2451013.0751 -22.40 2.10

2451013.9150 72.30 2.90

2451042.9614 -24.10 2.40

2451043.9607 -35.70 2.50

2451050.7308 42.40 1.40

2451051.7294 44.80 1.40

2451068.8311 -25.30 2.30

2451070.8914 -34.80 2.40

2451072.8169 70.00 2.40

... ... ...

Table 4.1: Sample of the 60 detected RVs at the Keck Observatory, starting on December 23, 1997

and ending on December 19. By astronomical convention, motion away from the Earth is defined

as a positive radial velocity.
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5

The Code

The purpose of the code developed and presented in this paper is to reproduce

and analyze synthetic RV data points that constitute a model for what might prospectively

be collected with ground-based telescopes. Because the TESS mission is still in the pro-

posal phase, the first part of the code is dedicated to generating data conforming to the

distribution of planets that we believe TESS can detect. The second part of the simulation

framework was built to output and analyze multiple RV data sets, from different ground

locations, and to reproduce data that replicates the expectations from realistic observing

conditions. Finally, the pipeline finds the best orbital parameter fit for a given system

through a LM minimization. The scripts described below were built using the Java script,

Beanshell, an embeddable Java source interpreter. They begin by initializing a new Kernel

context, the bridge between one or more application and the actual data processing done

at the hardware level.
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5.1 Content of the TESS folder

The TESS folder contains various .conscript and .txt files, and two Java classes.

The .conscript files are executable, while the .txt files are arrays, data types that contain a

series of elements of the same type placed in contiguous memory locations and that can be

individually referenced. Specifically, the folder includes:

• Mass Generator.conscript. It generates stellar masses ranging from F5 to M5

spectral type masses and are characterized by 0.45 M⊙ ≤ Mplanet ≤ 1.4 M⊙.

• Synth Masses.txt. It contains the star mass array generated byMass generator.conscript.

• Location generator.conscript. It generates a set of right ascensions, RA, and

declinations, DEC (location of the target in the sky), and includes a rejection method

that allows an even distribution of points in the sky and eliminates crowding at the

ecliptic poles.

• Synth RA DEC.txt. It is an array that contains 2500 synthetic star locations

generated by Location generator.conscript.

• Period Radius Generator.conscript. An investigation is currently ongoing re-

garding whether outer planets are larger than inner planets on average. The script

creates periods and radii of exoplanets according to the Lissauer J. (2011) article which

states “When considering the entire multi-candidate population, there is a slight but

significant preference for outer planets to be larger [Lissauer et al. (2011)].” Ran-

dom planetary periods are generated in the range of 2 days ≤ Pplanet ≤ 500 days

[Ricker (2011)] and planetary radii consistent with the generated periods, 0.1 R⊕ ≤

Rplanet ≤ 12 R⊕, are created.
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• Synth Period Radii.txt. It contains an array of planetary periods and radii created

by Period Radius Generator.conscript.

• OriginalFitGenerator.conscript. This code randomly picks a number of planets

between 1 and 3 and randomly assigns them a period and a radius drawn from the

Synth Period Radii.txt file. The script also generates planetary masses related to the

selected radii and periods according to the power law relationship (Equation 5.1)

between Earth and Saturn as shown in Figure 5.1 [Lissauer et al. (2011)]

Mplanet

M⊕

=

(

Rplanet

R⊕

)2.06

. (5.1)

Jupiter

Saturn

Earth
Uranus

Neptune

Figure 5.1: The power-law was obtained by fitting to Earth and Saturn. It slightly overestimates

the mass of Uranus and slightly underestimates the mass of Neptune. Jupiter, whose equation of

state is dominated by degeneracy pressure, is far away from the fit line.

• PlanetaryParameters.txt. It contains an array with the planetary parameters

picked by the OriginalFitGenerator.conscript
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• [system name] Original.fit. It contains the previously selected orbital elements,

but in a format that is compatible with the Systemic Console scripting language.

• LAT LONG 3scopes.txt. It is an array containing three observing sites, but more

can be loaded by simply extending the array with more ground-based locations.

• RV Generator from FitFile.conscript. It generates a number of RVs for each

loaded ground-based observing site and includes a set rejection methods to simulate

at best true observing conditions. A flowchart of this script is shown in Figure 5.2.

– When the script is initialized, it examines all days within a forward time interval

of one year (more observing time can be easily added). The program knows about

the current date and time by calling the Calendar class available in the java.util

method. The date is then converted to a Julian date (JD) [Duffett-Smith (1988)]

which, given the need to keep track of leap years and Universal Time, provides

a much easier way to work with time calculations. The JD is the interval of

time in days and fractions of a day since January 1, 4713 BC, Greenwich noon,

[http://en.wikipedia.org/wiki/Julian day], and it can contain up to five decimal

places depending on the precision of the recorded time.

– After the current JD is loaded, the clock is run forward in fifteen minutes incre-

ments. This specific time step was chosen because it simulates at best the time

gap between ground-based telescope observations: the fainter the object in the

sky, the longer the exposure time required to gather enough light to detect a

Doppler’s shift of the photons’ frequency.

– The script then encounters the first constraint. A science team cannot make
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Figure 5.2: Flowchart describing the sequential steps taken by the

RV Generator from FitFile.conscript to create sets of synthetic RVs
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ground-based observations each day of the year, therefore a random float number

(with six decimal places) anywhere between 0 and 1 is generated and if the value

of the float number is less than 0.9845, the script stops and moves on to the

next observing time, fifteen minutes later. This constraint represents a to 1.55%

chance of available telescope time or an average of 25 observations every year.

The yearly frequency of observations is the same as it would be for a science

team at the Keck I telescope in Mauna Kea, Hawaii

[http://www2.keck.hawaii.edu/observing/schedule/index.php].

– The next constraint samples the distribution of atmospheric conditions to see if

they are favorable to observe. The code performs the same random number draw

as it did in the previous constraint, and it assumes a 66.0% chance of favorable

weather.

– The third constraint is implemented to differentiate between night and day.

Knowing that a Julian date starts at noon, the code is instructed to consider

only time increments between 10:00 pm and 4:00 am. A more refined version of

the code will be able to include Sun’s rise and set times and will adjust the time

available to observe with respect to sky darkness.

– MoonPhase Java class called by the RV Generator from FitFile.conscript to

calculate the phase of the Moon [Duffett-Smith (1988)] and is examined in detail

in Section 5.1.1.

– AltAz Java class called by the RV Generator from FitFile.conscript to calculate

the altitude of the chosen star in the sky. It initializes by calculating the local

sidereal time (LST) and then proceeds to find the hour angle (HA), altitude
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(ALT), and azimuth (AZ) (see Section 5.1.2).

• derivefit levenberg.conscript loads the newly created RV data and the [system

name] Original.fit file and runs the Levenberg-Marquardt minimization method to

find the best fit. The code also displays the improved χ2
min,RV (υ) and RMS.

• [system name]minimized.fit is generated by the derivefit levenberg.conscript and

describes the improved orbital elements.

The flowchart displayed in Figure 5.3 shows how the full code proceeds through the scripts

to generate the “best fit”.

5.1.1 Full moon constraint

As stated above, the time available to make observations and collect data on a

telescope is restricted to an average of 25 days per year. The optimal observing times occur

when light pollution and atmospheric moisture are at minimum, but in these circumstances,

the priority for observations is given to teams who collect data from very faint objects such as

galaxies. Because the TESS research is focused on fairly bright stars (F5-M5 spectral type)

such as the Sun (a G2-type star), sufficiently accurate observations can be made relatively

close to a full moon cycle. However, the script will constraint the program from making

observations too close to new moon, the darkest days, such that if −8 days ≤ t ≤ +8 days,

the code will move on to the next JD. The calculations used to correctly predict the moon

phase must take into account the ecliptic orbit of the Earth with respect to the Sun, the

mean anomaly of the Sun (M⊙) which refers to the average motion of the Sun in a circular

orbit, its ecliptic longitude (λ⊙), the Moon’s true orbital longitude (λ$) and its mean

anomaly (M$), and five smaller corrections including, but not limited to evection, annual
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Figure 5.3: Flowchart describing the sequential steps taken by the code to create the best fit for a

given planetary system.
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equation, and variation [Duffett-Smith (1988)]. Finally, the correct moon phase can be

calculated using Equation 5.2 where µ is the Moon’s phase spanning from 0 (new moon,  )

to 1 (full moon, #)

µ =
1

2
[1− cos(λ$ − λ⊙)]. (5.2)

5.1.2 Star’s altitude constraint

The last constraint that needs to be considered is the altitude and azimuth of

the target star. The best location to observe a celestial body is at the zenith (90 ◦ angle)

and the worst, or rather impossible time, is when the target is located on the horizon (0 ◦

angle). Telescopes such as the Keck HIRES (Hawaii) and the VLT (Chile) can make quality

observations well below the right angle of altitude. The constraint in the code was set to

limit observations of celestial bodies at > 30◦ above the horizon. The altitude of a star is

(a) (b)

Figure 5.4: Equatorial coordinates. a) On the celestial sphere where the observer, O, is on the

northern hemisphere. b) As seen from the ground by the observer, O, looking up in the sky.

found by using the latitudinal and longitudinal coordinates of the observing site and the

RA and DEC of the target celestial body as displayed in Equation (5.3).

sin(ALT ) = [sin(DEC)× sin(LAT )] + [cos(DEC)× cos(LAT )× cos(HA)] (5.3)
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The coordinate system used to calculate this last constraint can be better understood by

looking at Figure 5.4. In Figure 5.4a , the observer, O, is at the center of the hamisphere,

the semicircle E�RW is the equatorial plane and the line OP is the axis of rotation. At P

all stars seem to describe circles as they move across the sky. In Figure 5.4b the equatorial

coordinates are represented as seen from the ground in the northern hemisphere and the

curve C�RD represents the equator and the star is represented by X. XC represent the

Declination (DEC) describing how far up in the sky the star is located from the equator.

C� represents the Right Ascension (RA) describing the westward movement of the star.

RA is a fixed point in the sky because the star moves along the equator with the rest of

the bodies. H describes the Hour Angle (HA) and it is a measure of how far the star Y

has traveled along the equator from the southern point R (time since the star crossed the

meridian).
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6

Results: The code output

The code first geneartes synthetic RVs. Since the observational errors are believed

to be of Gaussian nature and each radial velocity measurement has a corresponding uncer-

tainty estimate, it is possible to construct simulated data sets by adding Gaussian random

values to the actual data points. Each synthetic data set is meant to represent a possible

set of measurement values [Ford (2005)]. If the same fitting procedure is applied to the

actual and synthetic data set, then it is possible to obtain the distribution of best fit orbital

parameters. In principle, it is prudent to apply a global minimization routine to each data

set such as MCMC or SA, but in practice the heavy computational load suggests that a local

minimization routine such as the Levenberg-Marquardt is more appropriate. Even then, the

computational requirements can be challenging. For instance, for a system characterized

by four free parameters, the code must recalculate the χ2 8 times for each planet and then

once more after including all present planets. The synthetic .vels files include JDs, RVs

and a σ = 2.5 m/s common to all data sets. Similar in format to the previously collected

RV set explained in Section 4.2.1, Table 6.1 is an excerpt of a synthetically created .vels
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file and is similar to Table 4.1. Then, minimization routines can be implemented on these

synthetic RVs to find the best fits.

Julian Date (JD) RVSynth(m/s) σSynth

2455796.4838 81.17 2.50

2455821.4629 64.87 2.50

2455836.4838 90.57 2.50

2456061.5879 -13.98 2.50

2456076.4733 -55.18 2.50

2456091.5254 -27.05 2.50

2456109.5150 51.75 2.50

2456115.4213 77.85 2.50

2456116.5046 -43.35 2.50

... ... ...

Table 6.1: Sample of synthetically created RVs for the system HD187123 based on the Keck I

telescope coordinates. By astronomical convention, motion away from the Earth is defined as a

positive radial velocity.

6.1 Example continued: HD 187123 and its planetary system

Continuing with the example presented in Section 4.1.2, it is possible to derive

self-consistent fits and Monte-Carlo dynamical analyses of the orbital parameters of the

HD187123 system [Meschiari et al. (2009)]. Supposing that the planets HD187123b and

HD187123c had been discovered by a previous survey and that their periods, Pb and Pc, and

radii, Rb and Rc, were given with great accuracy from the RVs and transits detection, the

planets’ masses, mb and mc are calculated using Equation 5.1. The two periods and masses

are loaded into a [system name]Original.fit file which can then be loaded into the executable

file derivefit levenberg.conscript. The latter minimizes the masses, mean anomalies (Mb and

Mc), eccentricities (eb and ec), and longitudes of periastron (ωb and ωc). The reduced χ2
RV
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Planet P (days) m(mX) M(◦) e ω(◦) Uncertainties

Minimizedb 3.10 0.50 334.96 0.02 279.57 χ2
RV,b c = 26.98

Publicb 3.10 0.52 N/A 0.01 25.00

Minimizedc 3,810.00 1.60 121.50 0.79 229.33 RMSb c = 13.29 m/s

Publicc 3,810.00 1.99 N/A 0.25 250.00

Table 6.2: Orbital elements of the star HD187123 including uncertainties after the execution of the

LM minimizing method. The periods were left unchanged because the LM routine is not applied to

periodicities as TESS will give their accurate values.

generated from the planetary elements of HD187123b solely, and without applying a mini-

mization routine is fairly high, χ2
RV,b ≈ 1988.0. The least square fit obtained with both plan-

ets present, χ2
RV,b c ≈ 1978.0, still describes a rather poor fit (considering that for a perfect

fit χ2
reduced ≈ 1), but is lower than χ2

RV,b and therefore it can be considered as a step towards

a possible solution. When the LMminimizing routine is executed, better results are achieved

for the least square fit, given that the four orbital elements introduced at first are accept-

able guesses. The system obtained in Table 6.2 exhibits a definitely improved Chi Squared

(χ2
RV,b c = χ2

Minimizedb
+ χ2

Minimizedc
), but some parameters differ from the ones publicly

available (Publicb and Publicc) [http://www.exoplanet.eu/star.php?st=HD+187123]. For

instance, the minimized planetary mass of planet c differ by ≈ 20% and the longitude of

periastron of planet b (ωb) is ≈ 83%, far from the theoretical value. This differences can be

symptomatic of 1) insufficient RV data and/or 2) possible undiscovered bugs in the code,

particularly in the LM minimizing script and/or 3) the planetary system is too difficult to

recognize because it consists of 3 or more planets and it exhibits high eccentricities, and/or

4) the signal-to-noise ratio produced is high.

Another way to explore the χ2
RV space and derive the orbital parameters’ best fit is

by generating many synthetic RV data sets (as shown in Table 6.1) that are similar in values
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and number to the original ones. In the case of the system HD187123, 500 (i = 0, ..., 499)

synthetic .sys files, each containing 3 RV sets and an average of 70 RVs per set, are created

during a 10+ year time span. The derivefit levenberg.conscript examines these 500 systems

one at a time by minimizing the original planetary system according to the new RV sets.

The script produces 500 χ2
RV,i and corresponding minimized elements. When the planetary

masses versus χ2
RV,i are plotted as shown in Figure 6.1, it is possible to fit them to a normal

or Gaussian distribution as shown in Figure 6.2.

In the case of planet b (Figure 6.1a), the amplitude obtained is Ab = 0.468 ±

0.064 mX, or ±13.7% (Figure 6.2a), fully contains the published solution mb ≈ 0.52 mX

[http://www.exoplanet.eu/star.php?st=HD+187123], and gives a χ2
reduced ≈ 1. The plot for

planet c (Figure 6.1b) shows a very random distribution of masses versus least square fits.

However, at the bottom of the plot, there is an area with a noticeable higher concentration of

points. When zooming onto this area and, after completing the Gaussian fit (Figure 6.2b),

the amplitude obtained is Ac = 2.199± 0.035 mX which is ∼ 10% away from the published

value Publicc = 1.99 mX. It is, although, a stretch to exclude ∼ 75% of the minimized

masses and this poor fit is indicative of insufficient RV data to confirm and characterize the

existence of a second planetary mass. At this point, it is worthwhile to re-run the code with

an increased number of generated RVs. With an average of 112 observations over a 10+

years time span, the results obtained have greatly improved (Figure 6.3). After 85 iterations

and no data manipulation, the fit converged to an amplitude A = 2.11 ± 0.014 mX. This

value is ≈ 7% away from the theoretical value, mc = 1.99 mX, and confirms decisively

the presence of planet c. However, the achieved result, so close to the theoretical value,

is indicating that less RV data is necessary for confirmation. This next minimization step
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Figure 6.2: Gaussian distribution fitted to planet b (a), and planet c.
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Figure 6.3: 500 Synthetic RV data sets, each containing an average of 112 data points, were

minimized and then fitted to a Gaussian distribution.

will be implemented in a future version of the code: a small, synthetic RV data set will

be generated first and then the number of RVs will be increased one at a time in order to

achieve a result with 90% confidence.
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6.2 Code implementation and confirmation of planets dis-

covered by TESS

TESS will measure with great precision planetary periods and radii and because

of the accuracy of the period measurements, this particular parameter will not need to be

minimized. Masses, however, are the key parameters for dynamical studies, and will need to

be minimized as they will be approximated by the power law equation obtained in Section

5.1. Equation 5.1 is derived by sampling the planets’ masses in the Solar system as this

is the only model known with precise measurements and describes the best fit considering

Earth and Saturn solely. With the understanding that this fit is not optimal and does not

reflect many of the characteristics of the observed extra-solar systems (e.g. hot Jupiters),

it is however a concrete starting point for a planetary mass theory.

The first step consists in implementing the OriginalFitGenerator.conscript to ob-

tain an Original.fit as shown in Figure 6.4a. This file includes information about RV

datafiles, Init Vels.vels and Init Vels.sys (currently empty), stellar mass, orbital period-

icities obtained by TESS, and the corresponding planetary masses obtained by using the

planetary radii and Equation 5.1. Next, the RV Generator from FitFile.conscript generates

new RV data to replace the Init Vels.vels file and the Init Vels.sys file, taking into account

Keplerian orbits and a standard deviation of σ = 2.5 m/s. In a normal distribution this

standard deviation corresponds to 68% of the observations constrained within 2.5 m/s from

the mean and ≈ 95% of the RVs constrained within 5 m/s from the mean. The new RV

data sets (if the observing sites are more than one) are loaded onto the next script to-

gether with the Original.fit file. With the exception of periodicities, the orbital parameters
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# Initial Epoch: 2455888.6069

#start

Parent "datafiles/Init_Vels.sys"

ID 831

Components 2

PrimaryRVSet "Init_Vels.vels"

OverallRVOffset 0.0

RelativeRVOffset {

  0.0

}

"0" {

 Period 131.40

 Mass 0.09

 MeanAnomaly 0.00

 Eccentricity 0.00

 LongOfPeriastron 0.00

 Inclination 0.0

 Node 0.0

 Radius 0.0

}

"1" {

 Period 13.82

 Mass 0.03

 MeanAnomaly 0.00

 Eccentricity 0.00

 LongOfPeriastron 0.00

 Inclination 0.0

 Node 0.0

 Radius 0.0

}

Properties {

}

Notes {

}

#end

(a)

# InitialEpoch: 2455896.523542

#start

Parent  "datafiles/System831.sys"

ID  831

Components  2

PrimaryRVSet  "System831_0.vels"

OverallRVOffset  0.026499667111960577

RelativeRVOffsets  {

  "System831_1.vels"  -0.13742123708587836

  "System831_2.vels"  -0.30438982130568176

  "Trend"  0.0

}

"1"  {

  Period  131.4

  Mass  0.08227021633218997

  MeanAnomaly  1.8762887352476951

  Eccentricity  0.0

  LongOfPericenter  0.0

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

"0"  {

  Period  13.82

  Mass  0.02811874649848838

  MeanAnomaly  347.85876086107373

  Eccentricity  0.0

  LongOfPericenter  0.0

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

Notes {

null

null

}

#end

(b)

Figure 6.4: 831 planetary system’s .fit file outputs as loaded from the TESS file (a) and then

loaded again after the LM minimization routine (b)

are minimized through the LM routine, and a new Minimized.fit file gets created (Figure

6.4b)1. The latter still displays the same number of planets as the original system, but the

LM routine has found a best fit based on the new RV data. The comparison of the original

planetary masses and the minimized ones, can help determine how a best fit is dependent

on the number n of collected RVs.

As an example, the synthetic system 831 exhibits 2 planets with masses mb,init =

0.09 mX and mc,init = 0.03 mX. After loading an average of 126 RVs per telescope, the

1The absence of eccentricities in the minimized system is a common feature to all double planet systems
that the code produces and the nature of this outcome still needs to be investigated. One hypothesis could
be that small planetary systems governed by Keplerian orbits favor circular fits.
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LM routine minimizes the given fit and produces a new fit containing two planets with

masses mb,min = 0.082 mX and mc,min = 0.028 mX. Since mb,min = 91.1% mb,init and

mc,min = 93% mc,init are sufficiently close to the original values, the orbital parameters

predicted by TESS can be confirmed. Thus, the minimized fit gave insights regarding RV

offsets and planetary mean anomalies and it established the number, n, of RVs that were

collected by a specified ground-based telescope to corroborate TESS’ guesses.

# Initial Epoch: 2455889.6069

#start

Parent "datafiles/Init_Vels.sys"

ID 935

Components 3

PrimaryRVSet "Init_Vels.vels"

OverallRVOffset 0.0

RelativeRVOffset {

  0.0

}

"0" {

 Period 191.60

 Mass 0.28

 MeanAnomaly 0.00

 Eccentricity 0.00

 LongOfPeriastron 0.00

 Inclination 0.0

 Node 0.0

 Radius 0.0

}

"1" {

 Period 58.19

 Mass 0.05

 MeanAnomaly 0.00

 Eccentricity 0.00

 LongOfPeriastron 0.00

 Inclination 0.0

 Node 0.0

 Radius 0.0

}

"2" {

 Period 259.90

 Mass 0.16

 MeanAnomaly 0.00

 Eccentricity 0.00

 LongOfPeriastron 0.00

 Inclination 0.0

 Node 0.0

 Radius 0.0

}

Properties {

}

Notes {

}

#end

(a)

# InitialEpoch: 2455896.440208

#start

Parent  "datafiles/System935.sys"

ID  935

Components  3

PrimaryRVSet  "System935_0.vels"

OverallRVOffset  -0.11444453372555057

RelativeRVOffsets  {

  "System935_1.vels"  -0.4704367088956301

  "System935_2.vels"  0.3225857596157749

  "Trend"  0.0

}

"1"  {

  Period  191.6

  Mass  0.3211197724335909

  MeanAnomaly  357.7410893960517

  Eccentricity  0.021025934180228908

  LongOfPericenter  0.04320392197227427

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

"0"  {

  Period  58.19

  Mass  0.06453420058917264

  MeanAnomaly  1.4317312290183812

  Eccentricity  0.0811487717574434

  LongOfPericenter  0.024041772455819132

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

"2"  {

  Period  259.9

  Mass  0.18337400060819467

  MeanAnomaly  353.6925246090658

  Eccentricity  1.6007034014123953E-5

  LongOfPericenter  0.12343372414931082

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

Notes {

}

#end

(b)

# InitialEpoch: 2455897.429792

#start

Parent  "datafiles/935Synth.sys"

ID  935

Components  3

PrimaryRVSet  "935_tel0.vels"

OverallRVOffset  -0.4724482490675283

RelativeRVOffsets  {

  "935_tel1.vels"  0.5074485058476147

  "935_tel2.vels"  1.024581270909027

  "Trend"  0.0

}

"1"  {

  Period  191.6

  Mass  0.3080349123105966

  MeanAnomaly  3.3940419653512137

  Eccentricity  0.013787048472365972

  LongOfPericenter  0.21241119645038756

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

"0"  {

  Period  58.19

  Mass  0.04783391326205045

  MeanAnomaly  354.8018902082518

  Eccentricity  1.3474294721570526E-4

  LongOfPericenter  0.08778667875365231

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

"2"  {

  Period  259.9

  Mass  0.18952502095107213

  MeanAnomaly  4.309485113066635

  Eccentricity  0.039058449425547065

  LongOfPericenter  0.04602794905125343

  Inclination  0.0

  Node  0.0

  Radius  0.0

}

Notes {

}

(c)

Figure 6.5: 935 planetary system’s .fit file outputs as loaded from the TESS file (a), loaded again

after the LM minimization routine (b), and loaded one final time after LM routine was performed

on an increased number of RV data

Another example is given by the system 935, displaying 3 orbiting planets, as
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System 935 mb(mX mc(mX md(mX n

Original 0.28 0.05 0.16 0

Minimized1 0.32 0.065 0.18 263

(min/orig)1 87.5% 77% 89%

Minimized2 0.30 0.048 0.19 420

(min/orig)2 93% 104% 84%

Table 6.3

shown in Figure 6.5. Figure 6.5a displays its found orbital masses and periods just as

Figure 6.4a did for system 831. However, this time, when the new Minimized.fit file is

obtained, the planetary masses are not within 10% of the originals. Table 6.3 shows the

orbital values obtained according the number of RVs collected.

When looking at the mass ratios of the System 935, the first time the orbital

elements are minimized, the new masses fall within 77-89% of the original masses. According

to the TESS mission standards, this difference is too large to decisively confirm the presence

of the identified planets. We find, however, that, by increasing the average number of

collected RVs per telescope by 60% (from nave = 88 to nave = 140), better mass estimates

are obtained. During the second trial, the first two planetary masses of System 935 are

confirmed, while the last one still needs more RV data to ensure confirmation. As a side

note, although the implemented LM routine considers planets governed by Keplerian orbits,

a system composed of three or more perturbing bodies cannot be described by such physical

process. The mutual gravitational force of the objects creates different dynamics, often with

catastrophic effects that the current LM minimizer does not take into account.

In summary, according to TESS established standards, if a minimized planetary

mass is well within 10% of the original one, as in the case of System 831, a lower number of

ground-based, follow up observations could be performed without putting its confirmation
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Figure 6.6: This flowchart is a map of the sequential steps needed to minimize RV data and analyze

and confirm the planetary systems observed by TESS

at risk. Otherwise, if a minimized planetary mass is beyond 10% of the observed one, as

in the case of System 935, more observations must be carried out. Through a balanced
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plan, more corroborating efforts can be spent on the latter case (and less on the former) to

confirm the presence (or absence) of a specific planetary system.

The flowchart displayed in Figure 6.6 summarizes the multiple steps necessary to

obtain improved and minimized planetary systems. To notice in Figure 6.5c and 6.5b,

is the appearance of eccentricities in the [system name]Minimized.fit files. The actual

dynamical stability of planetary systems depends greatly on the eccentricities and mutual

inclination, none of which can be measured well from transits and RV data alone. The

most stable planetary systems are those with circular coplanar orbits (which minimizes the

momentum deficit) [Lissauer et al. (2011)]. Thus, it is important to investigate possible

high eccentricities generated by the code because the dynamical stability of the system can

be forever jeopardized.

6.3 Minimization of the time frame and estimate of best lo-

cations

There is an unavoidable truth to the saying “Theres no such a thing as a free

lunch.” A data set that includes hundreds if not thousands of RVs would permit near-

perfect measurements of orbital parameters. Three problems arise, however. First, the

Time Allocation Committees do not favor long and drawn out data collection time spans.

Second, RV detections are expensive in terms of real dollars, telescope time, and third, the

competition between the various, planet-hunting teams is intense, and improved “guessing”

techniques are highly sought after. If the given initial orbital parameters are good guesses

compared to the actual present ones, then it seems that the Refitting to Synthetic data
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method might be one of the most efficient at finding out how many radial velocities should

be collected, via ground observations, before confirming a planetary system.

Another factor that can greatly improve the efficiency of follow up observations

is the selection of observing sites. Given that an optimal location should comprise all the

characteristics of already existing sites such as altitude and minimal light pollution, there

could be the possibility of erecting new telescopes. A newly built site could cost less than

$6,000,000 including hardware and labor, fairly inexpensive in comparison to the expenses

incurred to build HIRES at Keck: without including labor, the hardware was estimated to

cost $4,000,000. With a hypothetical $600,000,000 budget, the TESS mission could easily

consider new locations. This option would ease the competition for observing time and

shorten the follow up time frame.
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7

Conclusions

TESS will try to take a step towards solving a major outstanding question in

planet formation: how common are planetary schemes with architectures similar to the Solar

system? In the known planetary systems within 200 pc, the average m sin i ≈ 1.6 mX, and

the average orbital distance from the host star is 0.9 AU . Given all the observational biases

and technical constraints, these values suggest that the Solar system may well prove to be

typical. However, the Solar system is currently considered atypical due to the nearly circular

orbits of its planets (which also give it long term stability) versus the average exoplanetary

eccentricity, eave = 0.25. An important improvement to planetary architecture theory, will

be brought by a more efficient planetary mass theory, consistently fitting the observed data.

Furthermore, the code demonstrates that while detections of short period planets can be

rapidly corroborated, planets with long orbital periods will require observations spanning

years if not decades to obtain reasonable results. It is also more difficult to obtain precise

orbital elements for planets with large orbital periods because, while planets with short

periodicities can be routinely observed for multiple cycles, long period candidates can often
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be observed only for one period or less. Fitting multiple planet systems requires many

more free parameters, so that observational data may not precisely constrain all the orbital

elements or even distinguish between degeneracies (multiple possible orbital solutions).
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