
Cizdziel 1

Programmable LED Signs for Campus Buses

Benjamin Cizdziel
University of California, Santa Cruz

Inter-Networking Research Group

Faculty Advisor: Katia Obraczka

Graduate Advisor: Kerry Veenstra

I. Abstract

Our goal with this project is to design programmable LED route signs for UCSC campus

buses. The sign design involves an LED matrix used to display the route characters and a

microcontroller that controls which rows and columns of the matrix are turned on. Additionally,

we processed font files to generate data that is used to drive the correct LEDs to display the text.

We have built a working miniature prototype, which validates our design approach. Our next

step is to develop a full-size prototype. In an effort to reduce the power consumption of the sign,

we will use DC step-down converters to power the LED display. This project is part of the

UCSC Inter-Networking Research Group’s Bus Tracking System project, whose major goals are

to provide real-time campus bus location maps on the web along with an ad-hoc networking test

bed. In the future, the microcontroller used to control the LED sign will also wirelessly transmit

GPS route data to campus base stations.

Figure 1: LED bus sign design diagram.

Cizdziel 2

II. General Design

Figure 1 depicts the overall design of the

LED route sign. The LED matrix displays the text

of the route name. Appropriate LEDs are turned on

to show each character on the matrix. Locations on

the matrix can be identified by its rows and

columns.

The entire system is powered by the bus

battery, at either 12 or 24 volts (choice between the

two). This battery powers each LED in the matrix,

the microcontroller, and the decoder.

Each column of the LED matrix is

connected to the drain of an NMOS transistor

whose source is grounded, to be used as a switch.

Additionally, the bus battery is connected to a buck

converter, which is a DC step-down converter

(explained in Section V), and through a switch to

each row. These row switches will most likely be

MOSFETs, but this is still being deliberated. To

power an LED, its row switch must be closed and

its column transistor must be turned on. This

completes the circuit: from power to the buck

converter and through the LED to ground.

A microcontroller is used to control the row

switches and column transistors, thus controlling

which LEDs are turned on. It determines which

LEDs will be displayed based on a character string

input.

A set of pins from the microcontroller that

counts from 0 to n bits is connected to a digital

decoder, which outputs one “high” voltage signal at

a time and shifts it among its 2
n
 outputs. Each

decoder output is connected to the gate of its

corresponding column transistor. Whenever an

NMOS gate gets a high signal, it turns on, giving its

column a path to ground. Therefore, due to the

decoder output, the columns turn on one at a time

in order, continuously cycling.

As the columns are cycling on one at a time,

microcontroller pins close the appropriate row

switches to turn on the proper LEDs for displaying

the characters. Each column gets its own set of row

data. A major reason for cycling the columns

instead of having each column always on is to

reduce the amount of row switching pins needed

from the microcontroller. Since the columns are

cycled, the same row pins can be used with their

data changing for each column. The columns will

be cycled fast enough so that each column appears

to be on at all times, with no flickering of text.

The actual sign will use multiple modules of

these cycling column sets, which will all be

working at the same time. This is to keep the LEDs

bright enough to see clearly. The more columns

there are in a cycle, the dimmer each LED is, since

its percentage of on time (duty cycle) decreases.

III. Font Processing

 A font is necessary to display the text on the

LED sign. We found a Python program called

“dewinfont.py” that we used to help process the

necessary font data. This program requires a .fon

file (a common bitmapped font format) input and

outputs general information about the font as well

as data for each ASCII character. Figure 2 shows

the data that is output for each character of the .fon

file: the character number, width in bits, and outline

(with 1’s filled in and 0’s unfilled). The font that

we have chosen to use thus far is System Bold,

which is the same one illustrated in Figure 2.

Figure 2: System Bold font data to be processed.

Cizdziel 3

 For this output data to be useful to the LED

sign project, it needed to be processed and

formatted in a way that the data could be easily

accessed by the main microcontroller program that

controls the sign. To do so, I wrote a C program

called “fontproc.c”. This program requires an input

of the text file output of “dewinfont.py” (from

some .fon file) and automatically creates the

“fontdata.c” file when run, which contains relevant

data of the processed font. This data includes a

constant for the height of the characters in bits

(same for all characters in a font), an array

containing each column of character outline data

converted into binary integers, an array of structs

containing the index of each character in the

column data array and the width of each character,

and more. The number and set of characters that

are processed can be specified in “fontproc.c”.

 Each part of a character’s outline from the

Python program’s output data directly corresponds

to an LED on the sign. A ‘1’ represents an

illuminated LED while a ‘0’ represents an LED that

is turned off. This functionality is created in the

microcontroller program, which is explained in the

next section (IV). The “fontdata.c” file is listed as

an included file for the preprocessor in the

microcontroller program so that its data can be

readily accessed for use in controlling the sign.

IV. Microcontroller Programming

 We are using the Atmel AT32UC3A0512

32-bit AVR microcontroller for this project. The

development board that has been used with it is the

Atmel STK600 (Figure 3). However, for the final

product, a custom board will be designed. As noted

in the previous section, the “fontdata.c” file is

included in the main microcontroller C program,

which is called “LEDsign0512.c”. The

microcontroller program was developed and runs

with AVR Studio 5. The current general tasks of

this program will be discussed.

 The STK600 GPIO (general purpose

input/output) is used to control which columns and

rows of the sign are turned on. One set of pins is

sent to the decoder to cycle the columns and many

other pins are given row data for each column from

the column data array in “fontdata.c”. The flow of

the main LED sign program loop follows. First, the

GPIO is cleared. Then, a column is turned on and

the row GPIO is set based on which column is

turned on and what text needs to be displayed.

Finally, the column count is incremented and the

process repeats.

Figure 3: Atmel STK600 development board with mounted

Atmel AT32UC3A0512 microcontroller.

 The sign displays whatever the ‘route’

string is set to. If the string changes, the sign will

change to display the text from the new string.

This interaction is controlled by the USART

(universal synchronous / asynchronous receiver /

transmitter) and the INTC (interrupt controller) of

the microcontroller. When the USART receives

characters, the INTC activates and interrupts the

main loop to process and store the characters in a

string. When the string is completed, the ‘route’

string is replaced by the new string and the sign

begins displaying the new text.

 Each time the route string changes,

calculations are made for the new text to be

displayed. These calculations include finding the

size of the string in LED columns and the starting

and ending column positions on the text, which are

used to center the text on the display. Data for each

character of the ‘route’ string is copied from the

column data array into another array that is used to

set the GPIO controlling the rows on the LED

Cizdziel 4

matrix. All of the data used for these calculations

comes from “fontdata.c”.

V. Buck Converters

 Buck converters are high efficiency DC to

DC step-down converters and will be used to drive

each row of LEDs on the LED matrix. They are

being used to reduce the power consumption of the

LED sign. The simple alternative to using

converters to drive the LEDs is to place a resistor in

series with the bus battery (power supply) and the

LED load. However, this would waste a large

amount of power, as there would be a large voltage

drop across the resistor.

The circuit diagram for a buck converter is

shown in Figure 4. It consists of a power supply,

an inductor, a diode, and the load. In the LED sign,

the supply is the bus battery (12 or 24 volts DC)

and the load is one LED, since the columns turn on

one at a time. Approximately 2 volts are needed to

drive (turn on) the amber LEDs that we are

planning to use. Consequently, the buck converter

will be stepping down the bus battery voltage (12

or 24 volts) to the 2 volts needed for the LED load.

Figure 4: Buck Converter circuit diagram.

Simply put, the buck converter is a

switching-mode power supply. It is controlled by

opening and closing the switch, which charges and

discharges the inductor while providing power to

the load. When the switch is closed, the power

supply is connected in series to the inductor and the

load, and the inductor charges up. When the switch

is opened, the inductor’s stored energy (in its

magnetic field) discharges through the load and the

diode. The load voltage and current depend on the

duration of time that the switch is open and closed,

as well as the inductor’s inductance.

VI. Results

 A working miniature prototype of the LED

bus route sign has been built, and is shown in

Figure 5. This prototype follows the same design

as explained in Section II, but with a few

differences. Instead of the microcontroller

controlling the row switches and the LEDs being

powered by the bus battery through the buck

converters, the mini prototype is powered directly

from the STK600 GPIO ports which are connected

through resistors to the rows. This is the major

difference from the general design, but the full-size

prototype and completed signs will indeed use the

buck converters and bus battery to power the LED

display.

Figure 5: Miniature LED sign prototype running with System

Bold font. Cell phone shown for scale.

 The mini prototype contains all other facets

of the general design, including the column

transistors and decoder. Its LED matrix contains

16 rows by 64 columns, but the row and column

count of the final sign design is subject to change.

10-pin connector cables are used to connect the

STK600 GPIO ports to the prototype board, which

can be seen at the top of Figure 5. Ports A to H are

row drivers for the LEDs. Port M is connected to

the decoder to cycle the columns.

 Instead of cycling through each of the 64

columns one at a time, the columns were divided up

into four groups of 16 columns. The columns in

each of these four groups are cycled at the same

time. We chose to split up the columns into groups

Cizdziel 5

so that the LEDs on the prototype would be bright

enough, since the more columns there are in a

cycle, the dimmer the LEDs appear. This was

explained at the end of Section II. The final sign

design may consist of even more modules of

column groups so that it is bright enough to be used

on the campus buses.

 The USART was configured with the mini

sign prototype, and connects by serial port from a

PC to the RS232 port on the STK600. To set up

the USART, a terminal for the appropriate serial

port on the PC should be configured to the correct

baud rate (which is set in “LEDsign0512.c”).

When the microcontroller program is run, a

welcome message is printed to the terminal.

Typing characters into the terminal and pressing

return will display that text on the mini prototype,

with lowercase letters converted to uppercase.

 STK600 switches 0 to 6 were also

configured with the mini prototype to perform

different tasks. These include cycling between

preset route names and enabling delays to slow

down the sign display, allowing the column cycling

to be seen by eye.

VII. Future Work

 Our next immediate step in development is

to implement a full-size LED bus sign prototype

that includes the buck converters. This will involve

choosing the parts and LEDs, as well as designing

the printed circuit board to be used. The LED

count, sign dimensions, and font type also must be

finalized.

 Additionally, we will build a control panel

and sign programmer. The control panel will allow

the bus driver to cycle through preset route names

and also select when the bus is out of service. Two

buttons (one for cycling routes and one for out of

service) and a small screen will be on the control

panel. The sign programmer will attach to the

control panel and will allow any route name to be

programmed into the control panel.

 The microcontroller that is used to control

the sign will also be integrated with the research

CPU of the Bus Tracking System, which

communicates with the GPS and serves as a mobile

ad-hoc wireless testbed node for i-NRG’s research.

Figure 6: UCSC i-NRG’s Bus Tracking System logo.

Furthermore, the microcontroller will be set

up with a 900-MHz radio to transmit the route

name, bus ID, and GPS location coordinates to

campus base stations every few seconds. It will

automatically transmit whatever route name the

LED sign is displaying. EEPROM memory will

also be utilized with the microcontroller to store the

route name when the bus is turned off, so that the

LED sign will display the same route name when

the bus is turned back on.

VIII. Acknowledgements

 I would like to thank the UCSC Inter-

Networking Research Group (inrg.cse.ucsc.edu),

specifically Kerry Veenstra and Professor Katia

Obraczka, for their contributions to this project.

This research was sponsored by the UCSC

SURF-IT (surf-it.soe.ucsc.edu) Research

Experience for Undergraduates Program, NSF grant

No. CNS-0852099.

dewinfont.py:

http://www.chiark.greenend.org.uk/~sgtatham/fonts

Buck Converter Wiki (image used):

http://en.wikipedia.org/wiki/Buck_converter

http://www.inrg.cse.ucsc.edu/
http://www.surf-it.soe.ucsc.edu/
http://www.chiark.greenend.org.uk/~sgtatham/fonts
http://en.wikipedia.org/wiki/Buck_converter

