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Abstract

X-RAY-OPTICAL SCALING RELATIONS FOR THE DARK ENERGY

SURVEY Y3 REDMAPPER CLUSTERS

by

Jose Elias Jobel

Studies of galaxy clusters have proven successful cosmological probes. They are

known to be the largest structures to have become gravitationally stable and enter

into a state of virial equilibrium allowing us to infer valuable information about

dark energy. Thus we are interested in analyzing clusters identified in the Dark

Energy Survey Y3 (DES Y3) and work toward placing strong constraints on the

dark energy equation of state parameter, ωλ by analyzing the number density of

galaxy clusters across a range of redshifts as a function of cluster mass. Given the

fact that direct measurement of cluster mass is not yet possible, here in this work

we look at the correlation of richness for clusters in DES Y3 with X-ray temper-

atures and X-ray luminosities which relate to cluster mass, where richness is the

number of galaxies within a cluster. We introduce the Cluster Scaling Relation

(CluStR) fitting algorithm responsible for calculating scaling relations between ob-

servables by incorporating the Bayesian approach developed by Brandon Kelly. Fi-

nally, we then present our results as the following; an r2500 TX -λ scaling relation of

ln(E(z)-2/3kBTX,r2500) = (0.38± 0.06) ln( λ98) + 1.92± 0.02 results for 167 ’detected’

clusters with an intrinsic scatter σintr = 0.28 ± 0.02 and an r2500 LX -λ scaling re-

lation of ln(
LX,r2500

E(z)1044
) = (1.19 ± 0.14) ln( λ98) + 0.64 ± 0.07 results for 167 ’detected’

clusters with an intrinsic scatter σintr = 0.89 ± 0.05.
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1

Introduction

The Lambda Cold Dark Matter model, also known as ΛCDM, is the cur-

rent accepted cosmological model described by General Relativity and the Friedman-

Lemâıtre-Walker (FLRW) equations. The model describes a flat accelerating uni-

verse mainly dominated by unknown forms of matter and energy. The two are

referred to as dark matter and dark energy, respectively. While their physical

mechanisms are not fully understood yet, the effects they have on our Universe

are evident. For example, dark matter making up roughly 25% of our cosmos is

predicted to be composed of a non-relativistic (cold) non-baryonic form of matter

whose gravitational potential plays an important role in the hierarchical formation

of large scale structures (Voit, 2005; Frieman et al., 2008). Furthermore, 70% of our

cosmos is dark energy whose effects are associated with negative pressure responsi-

ble for the current dominating expansion rate of our Universe (Abbott et al., 2019).

Dark energy has influenced the structural growth from the smallest objects to large

scale structures by influencing the rate at which the Universe expands. For this

reason coupled with the fact that formation of structures is hierarchical, clusters

of galaxies are understood to be the most recent gravitationally stable objects that

can provide valuable information about dark energy. Thus, are powerful probes in

understanding the underlying cosmology. As an illustration, consider our universe

having contained a greater quantity of dark energy content in the past. Under this

condition, the expansion due to dark energy would force clusters of galaxies to form
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much earlier to reach their current number density. For this reason, studying the

number density of galaxy clusters across a range of redshifts as a function of clus-

ter mass can provide valuable information of how much dark energy was present

throughout time. As a result, we are interested in observables that directly relate

to cluster mass.

Galaxy clusters are great X-ray sources due to their deep potential wells

trapping ionized hydrogen and helium. The large collection of ionized particles are

in a plasma phase spanning throughout the cluster called the IntraCluster Medium

(ICM). Temperatures within the ICM reach between 107 - 108 Kelvin causing parti-

cles to emit thermal energy in the form of X-ray emission (Böhringer & Werner,

2010). The ICM being the ”hottest thermal equilibrium plasma” as stated by

Böhringer and Werner 2010 paper on X-ray spectroscopy of galaxy clusters, pro-

vides many observables relating to cluster mass. It is imperative to keep in mind

that for any observable-mass or observable-observable relation there will be an in-

trinsic scatter distribution associated which will be important to quantify.

This thesis will go into detail about the motivation for the CluStR pro-

gram, which incorporates a statistical Bayesian approach developed by Brandon

Kelly (2007). In section 1, I provide the general motivation to pursue the relation-

ship between cluster observables and cluster mass. In section 2, I describe galaxy

cluster formation along with cluster observables and their use for constraining cos-

mological parameters. Section 3 will cover a brief overview of the Dark Energy Sur-

vey and discuss the cluster finder program which outputs cluster candidates used

for X-ray analysis known as red-sequence Match-filter Probabilistic Percolation

(redMaPPer). In the same section I describe the Mass Analysis Tool for Chandra

(MATCha) X-ray analysis pipeline, a pipeline previously used to analyze the Sloan

Digital Sky Survey (SDSS) Data Release 8 (DR8) data set presented by Hollowood

et al. (2018). In section 4, I introduce the Cluster Scaling Relation (CluStR) fit-

ting algorithm responsible for calculating various scaling relations by incorporating

the Bayesian Approach developed by Brandon Kelly which implements measure-
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ment errors, intrinsic scatter, and gaussian mixture modeling for the covariates. In

the same section, I present the derived scaling relations results. Finally, Section 5

provides a summary of this work and future upgrades to CluStR.
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2

Cosmology with Clusters

Governed by Hubble’s Law, the history of large-scale structures of our uni-

verse can be traced back to regions of space where perturbations in the density

distribution within these region exceeded the mean density of the Universe from

which gravitational attraction between small-scale clumps of matter collected to

form larger structures (Voit, 2004; Allen et al., 2011). These objects then decoupled

from the expansion, collapsed to form galaxies, and eventually collected into clusters

of galaxies whose structures fell into a state of virial equilibrium (Voit, 2004). Fur-

ther understanding of this hierarchical process requires numerical simulations due

to the fact that spherically symmetric models of cluster formations are not enough

to fully describe the accretion process in clusters and is a topic outside the scope

of this work. For further details on cluster formation see, e.g., (Diaferio & Geller,

1997; Voit, 2004; Allen et al., 2011; Kravtsov & Borgani, 2012).

Although clusters of galaxies are complex structures that include a mix

of baryonic matter and non-relativistic (cold) non-baryonic matter, clusters have

proven themselves to be an outstanding source of information from aiding the es-

tablishment of our standard model of cosmology to providing ways to test models

of galaxy formation and the thermodynamics of the intergalactic medium. Our

first known encounter with galaxy clusters date back to Charles Messier (1784) and

William Herschel (1785) both of whome introduced to the world two now well stud-

ied clusters, the Virgo and Coma clusters. About two centuries later, the first cluster
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catalog was published by George Abell (1957) that contained 1682 selected clusters

of galaxies identified within the optical sky survey provided by the National Geo-

graphic Society of Palomar Observatory Sky Survey (Abell, 1957). Each cluster in

Abell’s catalog was purposefully selected for inclusion in several statistical analyses.

In more recent times, sophisticated tools are developed to help identify and analyze

potential clusters by creating automated pipelines such as the two discussed in this

paper. The first of the two tools is the red-sequence Matched-filter Probabilistic

Percolation (redMaPPer) algorithm responsible for identifying cluster candidates

from large optical surveys such as the one provided by the Dark Energy Survey

Collaboration and the second is the Mass Analysis Tool for Chandra (MATCha)

pipeline responsible for X-ray image analysis, both covered in detail in Section 3. I

provide below a brief summary covering cluster observables obtained through opti-

cal and X-ray wavebands, while attempting to emphasize their importance to this

work.

2.1 Optical Observables

Within galaxy clusters, spectroscopic data from galaxies allow the determi-

nation of cluster mass through studying galaxy dynamics (Voit, 2004). For instance,

assuming a cluster has been optically identified, one can measure the velocity dis-

tribution of galaxy clusters from redshift data alone which help reduce projection

effects and estimate the cluster’s mass. Applying this analysis to real clusters has

proven difficult to employ given that the velocity fields become irregular within

regions of increased particle kinetic energy implying the velocity dispersion distri-

butions are non-linear (Diaferio & Geller, 1997), (Voit, 2004).

Another advantage in working with optical data is the accessibility to a

cluster’s photometric redshift. In this work, cluster redshift emerges from the color

distribution obtained from multi-band imaging. This is done by exploiting the fact

that many cluster centers contain galaxies that have reached the end of their star

formation, leaving for us to see a color distribution from which we can deduce redshift
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estimates (Gladder & Yee, 2005; Gilbank et al., 2011; Bell et al., 2004). To do this,

one needs a red sequence model to fit individual galaxies and in return we obtain a

richness observable λ that correlates tightly with cluster mass (Rykoff et al., 2014).

Although the definition of richness varies, here we refer to λ as a variable quantity

that estimates the number of red-sequence galaxies within a cluster (Hollowood et

al., 2018; Rykoff et al., 2014).

2.2 X-ray Observables

Galaxy clusters as stated before are important stable astrophysical struc-

tures providing astronomers as well as cosmologists with cosmic-scale laboratories

in which we can study regions where the cluster’s gravitational potential well traps

hot plasma and raises temperatures up to 107 - 108 Kelvin causing particles to emit

thermal energy in the form of X-ray emissions. Called the IntraCluster Medium

(ICM), the plasma filling clusters contains three important X-ray collisional mecha-

nisms: free-free emissions (Bremsstrahlung radiation) caused by electric fields of

near by charged particles; free-bound emissions (recombination radiation); and

bound-bound emissions (Allen et al., 2011; Hollowood, 2018; Sarazin, 1988). Given

that all three processes are proportional to the electron density squared sets up the

concentrated X-ray brightness profiles of a cluster as ideal targets for well equipped

telescopes such as the Chandra X-ray Observatory who possesses high-resolution

imaging and spectroscopy, enabling us to compute X-ray temperatures and X-ray

luminosities (Voit, 2005).

Being the only X-ray luminous, spatially extended, and gravitationally

stable structures in the universe, clusters of galaxies as we have briefly reviewed

provide several multi-band observables for constructing cluster catalogs. Rich cat-

alogs as those used in this paper, prove important to the underlying cosmological

work presented in this paper because help us understand cluster selection and mass.
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3

Sample Selection and Analysis

3.1 The Dark Energy Survey

The Dark Energy Survey (DES) is a collaborative effort working toward

placing strong constraints on the dark energy equation of state parameter, ωλ, shed-

ding light on the most pressing question: What is dark energy? DES is composed of

two surveys: a wide-field survey and a narrow time-domain survey. Covering 5000

deg2 of the southern sky, the wide-field survey encompasses the 2500 deg2 of sky

previously surveyed by the South Pole Telescope (SPT) Sunyaev-Zel’dovich effect

(SZE) survey while making use of g, r, i, z and Y filters. Each section of the sky

is observed ten times in each band, the added exposure time allows for the faintest

galaxies to be detected. The aim of the wide-field survey is to detect more than

100,000 galaxy clusters with photo-z measurements to redshifts z≥1 and positions

for more than 300 million galaxies (The Dark Energy Survey Collaboration, 2005).

The time-domain survey on the other hand focuses on covering 27 deg2 of the same

area of the sky, allowing for light curve measurements of active galactic nuclei, SNe

Ia, core-collapse SNe, along with other varying celestial bodies (The Dark Energy

Survey Collaboration, 2005).

From its conception in late 2003, DES submitted a proposal to build the

Dark Energy Camera (DECam), a new advanced wide-field survey instrument to be

mounted onto the already existing optimally configured V.M Blanco 4m telescope

in Cerro Tololo Inter-American Observatory (Flaugher et al., 2015). The main com-
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ponents of DECam include a 519 megapixel optical CCD camera, a 5-band g, r,

i, z, and Y filter system, and a data acquisition and instrument control system to

connect with the Blanco telescope (Flaugher et al., 2015). With this instrument,

DES provides the astronomical community with the necessary data to place con-

straints on the dark energy equation of state parameter, ωλ. DES possesses a unique

approach that exceeds the redshift reach of previous successful photometric surveys

such as the Sloan Digital Sky Survey (SDSS) and the Red-sequence Cluster Survey-2

(RCS-2) (Gilbank et al. 2014) making it a great resource for cluster cosmology.

3.2 The redMaPPer Pipeline

From identifying overdensities of galaxies as clusters to estimating cluster

richness, optical cluster-finding algorithms have found their way to becoming an

essential tool that make use of the photometric data collected by surveys such as in

DES. In 2014, the red-sequence Matched-filter Probabilistic Percolation (redMaP-

Per) algorithm was introduced by Rykoff et al., (2014) as a photometric red-sequence

cluster finder based on the richness estimator developed in Rozo et al. (2009) and

Rykoff et al. (2012). It is a two-stage pipeline: a calibration stage and a cluster-

finding stage.

3.2.1 The Calibration Stage

Although redMaPPer relies only on the red sequence modeling approach, it

first uses a large sample of galaxies with known spectroscopic redshifts to empirically

calibrate the red sequence as a function of redshift. Each sample galaxy is therefore

used as a guide to find nearby overdensities of galaxies with similar optical color

(Rykoff et al. 2014). The process is iterated several times until we obtain a reliable

set of galaxy overdensities that are used as training clusters. These clusters are then

used to fit a linear red sequence model to all probable cluster members in the DES

catalog.
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3.2.2 The Cluster-Finding Stage

Having obtained our calibrated red sequence model, the cluster finding

process begins with the assumption that each photometric galaxy in the DES cat-

alog is a cluster center. To determine an appropriate cluster redshift zλ, all center

galaxy (CG) candidates with an overly dense population of nearby galaxies will be

assigned an initial cluster redshift estimate zred, where ”red” denotes we are using a

red sequence galaxy model (Rykoff et al. 2014). From this initial estimate, redMaP-

Per calculates a cluster richness λ along with correlated membership probabilities.

Galaxies with the highest membership probability are then selected to re-estimate a

new redshift by maximizing a likelihood function. This process is iterated until con-

vergence. The process continues by rank-ordering each potential cluster according

to likelihood.

This ranked catalog now goes through the percolation phase that begins

with the highest ranked cluster Cj by recalculating zλ and λ. It then determines a

galaxy as a cluster’s center with an accompanying centering probability Pcenter. Note

that a given galaxy in a cluster can be a center, satellite, or a non-cluster member

(Rykoff et al. 2014). Based on the determined center galaxy, the final zλ and λ are

calculated. redMaPPer now moves on to the probabilistic percolation step of this

phase and updates the catalog by masking out galaxies according to membership

probabilities. Finally, all low ranking cluster centers with a membership probability

greater than 50% are removed from the cluster Cj population. The above process

is repeated for the next ranked cluster Cj+1 in the catalog.

The output of this pipeline is a full cluster catalog that provides essential

data to this work such as cluster redshifts zλ, cluster richness λ, and centerings.

3.3 The MATCha Pipeline

As mentioned before, the intrinsic scatter distribution associated with

observable-mass or observable-observable scaling relations is a large source of uncer-

tainty but one can quantify this intrinsic scatter by following up optically-selected
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clusters with X-ray data which improve our effort to place strong cosmological con-

straint on the dark energy equation of state parameter, ω (Hollowood et al., 2018;

Wu et al., 2010). The X-ray data used in this section is collected by one of NASA’s

’great observatories’, the Chandra X-ray Observatory space telescope and processed

by the Chandra X-ray Center (CXC) dually managed by the Smithsonian Astro-

physical Observatory (SAO) and the Massachusetts Institute of Technology (MIT)

(Weisskopf et al., 2000). The Chandra X-ray Center is responsible for high-level

data processing, data archiving, making the data public, and providing the anal-

ysis tools essential for the Mass Analysis Tool for Chandra (MATCha) pipeline

introduced by Hollowood et al. (2018). MATCha is an automated algorithm that

employs several Chandra Interactive Analysis of Observations (CIAO) tools devel-

oped by CXC in order to measure X-ray temperature (TX), X-ray luminosity (LX),

cluster centroids, and r500 and r2500 radii as a follow-up for clusters that are found

in both the redMaPPer catalog and the Chandra archived data.

Similar to redMaPPer, MATCha can be described by two stages; a data

preparation stage and a cluster analysis stage. The data preparation is a relatively

short stage, which begins by obtaining a set of celestial coordinates (right ascension,

declination) along with corresponding redshift (zλ) from the redMaPPer cluster

catalog and cross checks with the Chandra archive using the find chandra obsid

CIAO tool for any cluster images with the given RA and Dec. Once an image at those

coordinates is found, it is downloaded and reprocessed using the chandra repro

CIAO tool. MATCha then applies the deflare CIAO tool to remove flares from

lightcurves and separately reduces the energy range to 0.3-7.9keV before creating

images and exposure maps for each observation (Hollowood et al., 2018). As a final

step in the data preparation stage, probable point sources are identified and removed

from images by employing the wavdetect CIAO tool, which repeatedly searches for

correlation between source pixels and ”Mexican-Hat” wavelet functions of various

scales set by the user.

MATCha is now ready for the cluster analysis stage which focuses on de-
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termining X-ray temperature, X-ray luminosity, and X-ray centroids within a 500

kpc regions, from which two radii are calculated, r2500 and r500. For future reference,

an r2500 region is defined to be the radius around a cluster halo where the average

density is 2500 times denser than the critical density of the universe. Similarly,

an r500 region is defined to be the radius around a cluster halo where the average

density is 500 times denser than the critical density of the universe. The procedure

is as follows: First, a 20 iteration attempt to find an X-ray centroid within a 500

kpc region is initiated by using the redMaPPer cluster center as its initial estimate.

Each iteration continues such that the 500 kpc region is moved until a new center

is found within 15 kpc of the previous center, iteration is then stopped. However, if

the maximum 20 iteration limit is reached without converging to a center, then the

cluster is marked ’undetected’. This ’undetected’ cluster is assigned an LX upper

limit using the redMaPPer center and a 500 kpc radius. If MATCha is able to con-

verge on an X-ray centroid within 15 kpc, it then verifies if the signal-to-noise ratio

is greater than 5.0. If the latter is true, then the cluster is marked as ’detected’, but

if false, the cluster is marked ’undetected’ and an LX upper limit is assigned using

the X-ray centroid position and the 500 kpc radius.

For each detected source, MATCha proceeds by obtaining a background-

subtracted spectrum within 500 kpc radius. An assumed galactic absorption column

density, nH, is calculated and the background-subtracted spectrum used to fit TX

and LX using the XSPEC HEASARC tool. Note that nH is calculated through the

HEASOFT tool (Hollowood et al., 2018). An initial r2500 is calculated from the 500

kpc TX . Additionally, an iterative step is taken to converge on a new centroid within

the r2500 region. If successful, a new background-subtracted spectrum is calculated

and used to find r2500 TX and LX . If the spectral fit within the 500 kpc region fails,

MATCha will use the LX - TX relation to repeatedly attempt to compute a TX

with an assumed 3.0 keV starting temperature along with a corresponding LX until

convergence. The r500 region is found starting from the r2500 TX and iterating using

the same steps as for the r2500 region. This concludes MATCha’s cluster analysis
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stage. Figure 3.1 shows a standard MATCha output after the above process is

complete.

Figure 3.1: This is an example of a final MATCha processed Chandra image located
at the redMaPPer celestial coordinates. The image is uniquely identified by the
following; Mem Match Id 41, z ≈ 0.35, and Obsid 17185. The yellow circles represent
the r500 radius. The cyan circle represents the r2500 region. The pink circle which
nearly over laps with the r2500 region represents the 500 kpc radius. The green box
at the center of each circle is placed by MATCha and represents the center of the
redMaPPer cluster candidate. The green ’x’ is placed on the location of the X-ray
centroid (see section 3.3). The green double lines making up the four smaller squares
are the CCD chip edges along with the green lines encompassing the four squares
are chip edges as well. Finally, the green ellipsoids mark X-ray point sources.
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4

CluStR Analysis of the Dark

Energy Survey Y3 redMaPPer

Catalog

Linear regression methods for analyzing astronomical data have been char-

acterized for their ability to measure the measurement errors in the independent and

dependent variable, but also for their ability to quantify the intrinsic scatter about

the regression line (Kelly, 2007; Gelman et al., 2014; Akritas & Bershady, 1996).

There are many commonly used algorithms in astronomy such as the FITEXY rou-

tine (Press et al., 1992) based on a linear least-squares fitting approach when only

measurement errors are present or the Bivariate Correlated Errors and intrinsic

Scatter (BCES) estimator (Akritas & Bershady, 1996) method for applying linear

regression analysis when intrinsic scatter and measurement errors are present. In

this paper we use the Cluster Scaling Relation (CluStR) fitting algorithm which

focuses on the importance of fitting a regression model to data that has heterscedas-

tic measurement errors, probable correlation measurement errors between variables,

and intrinsic scatter in the regression relation by employing the hierarchical Bayesian

model proposed by Brandon Kelly (2007). The method accounts for multiple in-

dependent variables, selection effects, and most notably non-detections. Here non-

detections refers to data points whose value could not be determined and have upper
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and/or lower limits placed on them (Kelly, 2007). Non-detections are also known

as ’censored data’. Additionally, this method has an underlying focus on deriv-

ing a likelihood function in the specific case when the intrinsic distribution of the

independent variable can be described by a Gaussian mixture model.

To understand the parameters in our statistical model, we need to compute

a posterior distribution. An important feature of CluStR is the inclusion of the Gibbs

sampler algorithm proposed in Kelly (2007) which uses a Markov chain simulation

(also known as Markov Chain Monte Carlo or MCMC) method to converge to a

desired posterior distribution. The Markov chain is formed through a sequence

of random walks in parameter space where each newly drawn value of the model

parameter νi is iteratively simulated and depends on the previously drawn value

νi−1 (Gelman et al., 2014; Kelly, 2007; Press et al., 2007). Each value of ν is saved

and the above process is iterated until the Markov chain simulation converges. The

default iteration ranges from a minimum of 5,000 to a maximum of 10,000 steps.

We opt for this method not only for the Markov chain property but for the reason

that each new value of ν is improved at each step of the iteration process, thus

converging to the desired posterior distribution.

In the final process, CluStR derives a scaling relation of the form ln(y)=α

ln( λ
λpiv

) + β. In general, the variable y can be an normalized X-ray observable TX

or LX , α is the slope of the regression line, β is the intercept of the fit, and the

parameter λpiv represents the pivot point of the fit. Figure 4.1 and Figure 4.2 show

the results of the analysis of the DES Y3 MATCha catalog.

4.1 Results

Our initial Dark Energy Survey Y3 redMaPPer catalog contained an ap-

proximate 53,600 potential clusters. Once this catalog was passed through the

MATCha pipeline, only 1,092 clusters were found within the Chandra archived ob-

servations across a redshift range of 0.10 < z < 0.95. The cluster sample used for

the TX -λ CluStR analysis consists of 352 ’detected’ clusters out of the 1,092 that
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were found. Out of the 1,092, 740 clusters fell within the ’undetected’ category.

From the 352 ’detected’ clusters, the following clusters were removed from the sam-

ple due to flags: 15 clusters removed were removed because their r500 region was

contaminated by another cluster, 7 clusters removed due to contamination in the

r2500 region by another cluster, 27 clusters removed due to similar contamination

of their background, 39 clusters removed as a result of ’masking’ (a foreground or

background cluster was detected instead of the target redMaPPer cluster), 9 clusters

removed due to ’bad mode’, 47 clusters removed due to their r500 radius extending

outside a chip edge, 41 clusters removed due to their r2500 radius extending outside

a chip edge. Keep in mind that a cluster can fail multiple flags. A total of 185

’detected’ clusters were removed from the scaling relation sample due to flagging.

This leaves us with a ’clean’ sample of 167 ’detected’ clusters that were not flagged

for the above reasons.

4.1.1 TX - λ Scaling Relation

To understand the relation between X-ray temperature and cluster richness

within an r2500 aperture, we rely on employing the CluStR fitting algorithm on the

167 ’detected’ clusters while comparing our results to those found in Hollowood et

al. (2018). In our analysis we derive the following relation in the 0.10< z < 0.95

range,

ln(E(z)-2/3kBTX,r2500) = (0.38 ± 0.06) ln(
λ

98
) + 1.92 ± 0.02 (4.1)

and an intrinsic scatter of σintr =0.28±0.02. Here we use the Hubble parameter E(z)

= H(z)/H0 to normalize the temperature measurements made within a critical over-

density region (Allen et al., 2011). kB is the Boltzmann constant. The pivot point

of the fit is located at λpiv=98. This is where the scatter about the regression line

is a minimum. See Figure 4.1 and Figure 4.2 for plots of the r2500TX - λ relations.

We now compare our r2500 TX -λ relation to that in Hollowood et al. (2018)

which use 235 ’detected’ SDSS DR8 redMaPPer clusters in their analysis. This is

about 40% larger than the sample size used in this paper. The relations are analyzed
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Figure 4.1: r2500TX - λ relation derived from a sample set of MATCha clusters using
CluStR. The red translucent bar indicates the intrinsic scatter about the regression
line. Here ’x’ in our case refers to the richness λ input. The ’xpiv’ refers to the pivot
point calculated as the median of λ, producing a λpiv = 98.

within two redshift ranges. For the r2500 TX -λ in the 0.1< z <0.35 range, the

Figure 4.2: (a) r2500 TX -λ scaling relation derived from SDSS DR8 cluster sample
(Hollowood et al., 2018) which include clusters of all redshifts. (b) Similarly, these
are clusters of redshift 0.1 < z < 0.35. The grey translucent bar indicates the 1σ
uncertainties. The red line represents the regression line, while the black points are
cluster data. Note the green dashes represent the scaling relation fit on the Chandra
ACCEPT cluster catalog presented in Rozo & Rykoff (2014). This figure was taken
from Hollowood et al. (2018).
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relation is

ln(E(z)-2/3kBTX,r2500) = (0.52 ± 0.05) ln(
λ

70
) + 1.85 ± 0.03 (4.2)

with an intrinsic scatter of σintr=0.27±0.02, comparable to the intrinsic scatter in

our analysis. The second relation is examines across all redshift range providing an

equation of that does not deviate significantly from Eq (4.2),

ln(E(z)-2/3kBTX,r2500) = (0.54 ± 0.04) ln(
λ

70
) + 1.82 ± 0.02 (4.3)

and has an intrinsic scatter of σintr=0.26±0.02.

We note the slope difference is less than 3σ. For a summary comparison

of the model parameter results see Table 4.1.

Catalog Relation Redshift Range α β σintr Figure

DES Y3 TX -λ 0.10< z <0.95 0.38±0.06 1.92±0.03 0.28±0.02 4.1

SDSS DR8 TX -λ All redshift 0.54±0.04 1.82±0.02 0.26±0.02 4.2 (a)

SDSS DR8 TX -λ 0.1< z <0.35 0.52±0.05 1.85±0.03 0.27±0.02 4.2 (b)

Table 4.1: Here we present fit parameters to the scaling relation ln(E(z)-2/3 kB
TX)=α ln( λ

λpiv
) + β for two separate datasets within an r2500 region. TX has units

of keV. We also present the redshift range in which each cluster sample set falls
within. Note σintr is the standard deviation of the intrinsic scatter. Our results are
compared to those of Hollowood et al. (2018).

4.1.2 LX - λ Scaling Relation

Similarly, the scaling relation analysis between X-ray luminosity and rich-

ness was performed using CluStR. We run the same flags cuts on the initial 352

’detected’ clusters, which result in removing 185 clusters due to flaggings. This

leaves us with a 167 cluster sample, a similar size to the one used for the TX - λ

analysis but still much smaller than 235 clusters used in the Hollowood et al.(2018)

LX - λ analysis. The reason for the size equivalence in samples has to due with our

choice of not including clusters whose luminosities could not be found as described

in Section 3.3. As a result, we speculate this could be a reason for the difference

in the intercept β values found in Table 4.2. Additionally from Table 4.2, we note

the intrinsic scatters from the SDSS DR8 and DES Y3 samples fall within range of

each other while our intercept value disagree significantly. Plots of the r2500 LX -λ
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relations can be found in Figure 4.3 and Figure 4.4. For a summary of the model

parameters see Table 4.2.

Catalog Relation Redshift Range α β σintr Figure

DES Y3 LX -λ 0.10< z <0.95 1.15±0.14 0.64±0.07 0.91±0.05 4.3

SDSS DR8 LX -λ all redshift 1.37±0.08 -0.08±0.05 0.84±0.04 4.4 (a)

SDSS DR8 LX -λ 0.1< z <0.35 1.11±0.16 0.02±0.09 0.99±0.06 4.4 (b)

Table 4.2: Here we present fit parameters to the scaling relation ln(y)=α ln( λ
λpiv

)

+ β, where y is the LX observable normalized by E(z) and has units of 1044 ergs/s.
Our results are compared to those of Hollowood et al. (2018).

Figure 4.3: An output graph of the r2500LX - λ regression as derived by CluStR. The
red translucent bar indicates the intrinsic scatter about the regression line. Here
’x’ in our case refers to the richness λ input. The ’xpiv’ refers to the pivot point
calculated as the median of λ, producing a λpiv = 98. Luminosities are normalized
using the Hubble parameter E(z) as a function of redshift. The above relations are
for soft-band luminosities.
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Figure 4.4: (a) r2500 LX -λ scaling relation derived from SDSS DR8 cluster sample
(Hollowood et al., 2018) which includes clusters of all redshifts and has no upper lim-
its. (b) Similarly, these are clusters of redshift 0.1 < z < 0.35. The grey translucent
bar indicates the 1σ uncertainties. The red line represents the regression line whose
parameters are given in Table 4.2. Black points are clusters that had their LX fit
along with TX . The cyan points are clusters whose LX were calculated from an ini-
tial assumed TX as described in section 3.3. This figure was taken from Hollowood
et al. (2018).
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5

Summary

In this thesis, we summarize the data process from the initial DES clus-

ter catalog to the application of MATCha responsible for providing X-ray imaging

analysis for clusters that fall within the Chandra archival data. We then introduced

CluStR as a fitting algorithm for studying the scaling relations between LX − λ

and TX − λ. In this work, we present fits to the scaling relations between X-ray

temperature and optical richness along with X-ray luminosity and optical richness

for clusters in the DES Y3 redMaPPer catalog. We find an r2500 TX -λ scaling re-

lation of ln(E(z)-2/3kBTX,r2500) = (0.38 ± 0.06) ln( λ98) + 1.92 ± 0.02 results for 167

’detected’ clusters with an intrinsic scatter σintr = 0.28 ± 0.02 and an r2500 LX -λ

scaling relation of ln(
LX,r2500

E(z)1044
) = (1.19 ± 0.14) ln( λ98) + 0.64 ± 0.07 results for 167

’detected’ clusters with an intrinsic scatter σintr = 0.89±0.05. The scatter and slope

of these relations are consistent with previous studies of lower redshift cluster sam-

ples from the Sloan Digital Sky Survey. These measurements will assist in the work

toward deriving cosmological constraints using DES clusters by giving a constraint

on the intrinsic scatter of optical richness with mass. Similar X-ray follow-ups using

redMapper and MATCha will likely extent to larger data sets like the full Dark

Energy Survey Y6 catalog and into the upcoming Large Synoptic Sky Telescope

(LSST) survey. Thus, we expect to see the application of CluStR to also extend

into the full DES Y6 catalog and LSST survey analysis.
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H. Böhringer and N. Werner. X-ray Spectroscopy of Galaxy Clusters: Studying

Astrophysical Processes in the Largest Celestial Laboratories. The Astronomy

and Astrophysics Review, 18:127–196, 2010. doi: 10.1007/s00159-009-0023-3. URL

http://link.springer.com/10.1007/s00159-009-0023-3.

D. G. Gilbank and M. D. Gladders and H. K. C. Yee and B. C. Hsieh. The Red-

sequence Cluster Survey-2 (RCS-2): survey details and photometric catalog con-



22

struction. The Astrophysical Journal, 141:94, Mar 2011. doi: 10.1088/0004-

6256/141/3/94. URL http://arxiv.org/abs/1012.3470.

E. F. Bell and C. Wolf and K. Meisenheimer and H. Rix and A. Borch and S. Dye

and M. Kleinheinrich and L. Wisotzki and D. H. McIntosh. Nearly 5000 Distant

Early-Type Galaxies in COMBO-17: a Red Sequence and its Evolution since z 1.

The Atrophysical Journal, 608:752–767, Jun 2004. doi: 10.1086/420778. URL

http://arxiv.org/abs/astro-ph/0303394.

B. Flaugher, H. T. Diehl, K. Honscheid, T. M. C. Abbott, O. Alvarez, R. Angstadt,

J. T. Annis, M. Antonik, O. Ballester, L. Beaufore, G. M. Bernstein, R. A.

Bernstein, B. Bigelow, M. Bonati, D. Boprie, D. Brooks, E. J. Buckley-Geer,

J. Campa, L. Cardiel-Sas, F. J. Castand er, J. Castilla, H. Cease, J. M. Cela-

Ruiz, S. Chappa, E. Chi, C. Cooper, L. N. da Costa, E. Dede, G. Derylo,

D. L. DePoy, J. de Vicente, P. Doel, A. Drlica-Wagner, J. Eiting, A. E. El-

liott, J. Emes, J. Estrada, A. Fausti Neto, D. A. Finley, R. Flores, J. Frieman,

D. Gerdes, M. D. Gladders, B. Gregory, G. R. Gutierrez, J. Hao, S. E. Hol-

land, S. Holm, D. Huffman, C. Jackson, D. J. James, M. Jonas, A. Karcher,

I. Karliner, S. Kent, R. Kessler, M. Kozlovsky, R. G. Kron, D. Kubik, K. Kuehn,

S. Kuhlmann, K. Kuk, O. Lahav, A. Lathrop, J. Lee, M. E. Levi, P. Lewis,

T. S. Li, I. Mand richenko, J. L. Marshall, G. Martinez, K. W. Merritt,
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Abstract

SCALING RELATIONS FOR THE DARK ENERGY SURVEY YEAR THREE

CATALOG

by

Paige Kelly

Galaxy clusters are excellent probes of dark energy in the universe due to how large they

are. Their mass throughout time can give insight to the evolution of dark energy. The

mass of galaxy clusters can not be determined directly, but the mass is related to other

observables. For this thesis I created scaling relations using information from the Dark

Energy Survey Year Three (DES Y3) data set between the X-ray observable temperature

(Tx) and richness (λ) of galaxy clusters that can be used to understand the evolution of the

universe and the affect dark energy had on it. I found the relation with no restriction on

redshift for an r2500 aperture to be ln(E(z)
−2
3 kbTxr2500) = 0.54 ± 0.06 ln( λ

λpiv ) + 2.02 ± .02

with the standard-deviation-of-intrinsic-scatter valued to be 0.24 ± 0.02. I also ran a fit

for the redshift range 0.2 < z < 0.65 and found the relation to be ln(E(z)
−2
3 kbTxr2500) =

0.54 ± 0.07 ln( λ
λpiv ) + 2.09 ± .03 with a standard-deviation-of-intrinsic-scatter found to be

0.26±0.02. The fits I found agree well with past results with all aspects except the intercept

value.
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1

Introduction

Based on many cosmological observations, the current standard model of the uni-

verse, until proven otherwise, is called the concordance model. Under this model, the

universe is understood to be flat with an accelerating expansion. The acceleration of the

universe can be observed by using type Ia supernovae as standard candles (Riess, 1998;

Perlmutter, 1999). Type Ia supernovae have a consistent luminosity. Under observation,

high redshift Type Ia supernovae were appearing fainter than they should be if the uni-

verse were not accelerating, leading to the discovery of the accelerating universe (Riess,

1998; Perlmutter, 1999). Two separate teams of astronomers including Adam Riess, Saul

Perlmutter, and Brian Schmidt independently made these initial discoveries in the 1990’s.

The accelerating nature of the universe required something else that was not the known

ordinary matter, dark matter, or light. Without another component, the universe’s expan-

sion would instead be slowing down. Current observations are consistent with the missing

information being a cosmological constant with a negative pressure which represents dark

energy, though it is possible it could be an energy density which changes in time rather
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than being constant (Riess, 1998; Perlmutter, 1999). Regardless, dark energy is causing the

accelerating expansion of the universe.

The effect of dark energy on the expansion history of the universe changes the

growth of structure and can be probed by looking at structure formation over time. In

particular, clusters of galaxies are effective to use due to how large these cosmological

structures are. Looking at further away clusters can give insight into galaxy clusters from

earlier on in the formation of the universe due to the time it takes the light to reach observers.

They can be compared to the density of closer clusters to understand their formation as well

as the role dark energy had in their formation. This can provide insight into the density of

dark energy throughout time and if it is constant as currently believed.

Galaxy clusters are produced by gravitational in-fall. Essentially, a smaller object,

that is denser than the surrounding area has gravity that pulls more objects in, which are

eventually grouped to form into galaxies whose gravity pulls in more galaxies—these galaxies

that have collected are called galaxy clusters. They are roughly 1015 times the mass of the

sun and have decoupled from the expansion of the universe (Voit, 2005). In addition to

galaxies, galaxy clusters contain hot gas and dark matter (Voit, 2005). The dark matter

creates a halo filling and surrounding the cluster, with the hot gas and clusters inside of the

halo. Most of the mass in a galaxy cluster is from the hot gas and dark matter (Voit, 2005).

Dark Matter is a form of matter that has not been detected directly. It is non-interacting,

but its gravitational effects can be seen. Our current theories of gravity show there is not

enough baryonic matter in the universe to prevent galactic structures, like galaxies and

galaxy clusters, from moving away from each other or for them to have formed to begin

with. Dark matter is non-baryonic and accounts for this “missing” matter in the universe
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that helped with the formation of structures like galaxy clusters (Voit, 2005). Clusters form

through gravity during the accelerated expansion of the universe, meaning the formation of

galaxy clusters is sensitive to dark energy as well.

The Dark Energy Survey provided the large samples of clusters required for this

project. The goal of the Dark Energy Survey (DES) is to understand the nature of dark

energy. To meet this goal, over 400 scientists from around the world are collaborating to

map and then study galaxies, supernovae, and patterns of cosmic structure (Lahav et al.,

2020). 5000 degrees of the sky has been analyzed and information on roughly 300 million

galaxies has been found using the Dark Energy Camera (DECam) mounted on the Blanco

4m telescope located at the Cerro Tololo Interamerican observatory in Chile (Flaugher,

2015). The telescope was built in the 1970’s and the DECam was added in 2012 after

four years of assembly. DES uses five filters with a diameter of 62cm—the sky is imaged

by each of these which range between 400nm to 1080nm (Flaugher, 2015). The camera

holds 74 CCDs, and the specific ones used by DES were designed by scientists at the

Lawrence Berkeley National Laboratory (Flaugher, 2015). They were intended to detect

distant galaxies, which is easier to do with thicker CCDs because the likelihood of detecting

longer wavelengths increases with thickness, so they were designed ten times thicker than

they typically are (Flaugher, 2015). It is still true that it is more difficult to detect distant

galaxies. The galaxies being analyzed in this thesis are from the DES year three (Y3) data

set. These galaxies are grouped into clusters and can be further analyzed to eventually

determine the masses of galaxy clusters.

The galaxy cluster mass function refers to the number density of clusters as a

function of mass. The way dark energy is probed is by looking at the mass function and its
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evolution–this means we need mass. Lensing can directly determine the mass of a galaxy

cluster, but this method is not practical while studying large quantities of galaxy clusters .

Instead, we can calibrate these clusters using X-ray follow up. It is an excellent observable-

based method of studying dark energy in the universe (Farahi et al., 2019; Hollowood, 2019;

Zhang, 2019). There are various observables that correlate with mass, but they all have

scatter we need to understand (Wu, 2010). These observables include the temperature,

luminosity, and richness of the galaxy clusters (Hollowood, 2019). A linear regression be-

tween the richness of a cluster to an X-ray observable can provide insight to the evolution

of the universe which we can use to understand the nature of dark energy. Richness is an

observable used by DES that refers to the amount of galaxies in a given cluster. I created

a code called CluStR with Jose Jovel mentored by Spencer Everett that can create these

relations.

The Background of this thesis will detail the two programs that are implemented

before CluStR is used. The CluStR section will describe the purpose and functionality of

the CluStR code. The results section will contain the plots made by CluStR along with their

respective scaling relations with information about what can be done with them. Finally,

the results section will summarize my findings and discuss the possibilities for the future of

CluStR.
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2

Background

2.1 RedMaPPer

When mapping galaxies based on their color and magnitude two groups become

clear. One of these groups, the ‘blue cloud,’ contains blue galaxies with a large color

dispersion. The other contains red galaxies that have a tight relationship with a small range

of colors that belong to the ‘red sequence.’ Most galaxies fit in either the red sequence or

the blue cloud. Galaxies in the red sequence are early-type galaxies that tend to cluster

together (Eales et al., 2018). In log space, a linear correlation can be seen when mapping

the X-ray observables luminosity (Lx) or temperature (Tx) of a set of galaxy clusters to

the number of galaxies in each cluster, which is known as richness (λ). From this, a mass

relation can be determined.

The galaxies identified by the Dark Energy Survey from year three (DES Y3)

must be run through an algorithm that identifies clusters by their red sequence and their

properties. The red-sequence Matched-filter Probabilistic Percolation (redMaPPer) cluster
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finder identifies these clusters by taking galaxies of known spectroscopic redshifts and then

finds groups of galaxies with similar color to model the red sequence (Rykoff, 2014). The

red sequence model is then applied to the galaxies from DES Y3 and galaxy clusters can be

determined along with a probability of the richness of the cluster. The probabilistic centers

of the clusters are found by iterating through possible central galaxies and removing the

less likely centrals. The five galaxies that are most likely to be the centers are kept (Rykoff,

2016). A fraction of the galaxy clusters identified by redMaPPer can be analyzed further

by being compared to Chandra X-ray observations (Hollowood, 2019).

2.2 MATCha

Further analysis can be done by using the Mass Analysis Tool for Chandra (MATCha)

pipeline. MATCha takes in a list of sky coordinates and redshifts of the clusters found using

redMaPPer and runs them through several Chandra Interactive Analysis of Observations

(CIAO) tools (Hollowood, 2019). The first tool called find chandra obsid determines which

clusters from the data are also covered by Chandra data. Chandra has not observed the

whole sky, so only clusters that have been observed by Chandra are analyzed. The Chandra

instrument is sensitive to a wide energy range, so we limit the energy range to the band

where Chandra is most sensitive and best calibrated (Fruscione, 2006). Unlike optical, we

do not use filters. In X-ray we can estimate the energy of each individual photon and then

pick the ones we want to use. The data covered by Chandra is then downloaded and further

refined with the CIAO tool chandra repo. Time periods with high particle background are

called flares. MATCha removes the flares with another CIAO tool called deflare. Images

and exposure maps can then be made. Following these steps, point sources are identified



7

and they are removed using the tool wavedetect (Fruscione, 2006).

The Chandra X-ray observatory, which is a NASA facility, has an instrument

called the Advanced CCD Imaging Spectrometer (ACIS) that is composed of 10 CCDs. It

was created by the Massachusetts Institute of Technology alongside the Pennsylvania State

University. Four of these chips are front illuminated and are referred to as the ACIS-I

array. Four of the remaining chips are also front illuminated, with the other two being

back illuminated. They are arranged in a row and make up the ACIS-S array (Plucinsky,

2018). Due to these differences, ACIS-S and ACIS-I have inconsistent instrument response.

Response files are based on the efficiency of the detection of photons at different energies, and

they account for the different responses throughout the CCDs (Hollowood, 2019). Because

of the inconsistencies, observations on the ACIS-S array are cleaned one chip at a time, and

ACIS-I observations can be cleaned as a group since the ACIS-I array does not have major

differences between each chip (Hollowood, 2019). Clusters are then ready to be analyzed

one at a time by MATCha (Hollowood, 2019).

In the individual cluster analysis, the goal is to fit an X-ray temperature (Tx),

an X-ray luminosity (Lx), as well as X-ray centroids which are computed using the CIAO

tool dmstat (Hollowood, 2019). Due to the unique responses of each CCD, specifically for

the ACIS-S array, the source and background regions are constrained to be on the CCD

of the centroid. The source and background for the ACIS-I must lie on the array due to

the similarity between the CCDs (Hollowood, 2019). Through an iterative process, first

a centroid is found within a 500kpc radius with the starting point being the redMaPPer

center. The centroid is then updated to the new centroid, and the process is repeated with

the updated centroid. This process allows there to be 500kpc from the redMapper center
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and the final centroid found by MATCha. If the new center is found to be within 15kpc of

the previous center, then the iteration stops, if this does not occur before 20 iterations are

complete, the cluster is considered undetected. A cluster is also considered undetected if

the signal-to-noise ratio in the final 500 kpc region is less than 5. For those clusters marked

undetected, MATCha will fit an upper limit for Lx. MATCha will then try to fit Tx and

Lx for the detected clusters (Hollowood, 2019).

For the detected clusters, the background is determined as an annulus with the

inner radius being 700kpc and the outer being 1000kpc, this is done with the tool specextract

(Fruscione, 2006). MATCha can then find a background-subtracted spectrum for the 500kpc

radius which is used to attempt to fit Tx and Lx values using the tool XSPEC (Fruscione,

2006). If the fit can be completed, using the value determined for Tx, a radius around each

galaxy cluster halo is fit at the point the average density is 2500 times the cosmological

critical density. This radius is referred to as r2500. A new centroid, Tx, and Lx is then

determined using the r2500 radius. The process is the same as before, and if the new

centroid is not found within 20 iterations, it is aborted. Using the new temperature, a new

value for r2500 is calculated, if it is within 1σ of the last value for r2500 then the value for

r2500 is considered to have converged. MATCha then moves on to the radius at 500 times

the cosmological critical density, or r500. The process for this is identical, except the most

recently determined centroid is used for the new initial centroid (Hollowood, 2019). After

running MATCha, we now have galaxy clusters that have various values for Tx and Lx that

can eventually be used in regression analysis.

After the automated MATCha analysis we examine the output. The galaxy clus-

ters must be manually examined by members of my research team to determine potential
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flags. The flags will label issues such as a cluster too close to the chip edge or any interest-

ing features such as a cluster that is merging (Hollowood, 2019). A catalog is then created

with these flags identified as well as the data on each cluster determined by MATCha and

redMaPPer. Some of the flags must be cut from the catalog before a linear regression can

be determined. Details on specific flags and cuts can be found in section 3.2.3. Linear

regressions can then be determined between Tx or Lx and richness.
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3

CluStR

3.1 Scaling Relations

The complete catalog of galaxy clusters is then ready for regression analysis. The

model used must produce a relationship between the X-ray observable Tx or Lx and λ while

accounting for intrinsic scatter as well as error. The error analysis must account for corre-

lated measurement, censored data, and heteroscedastic errors (Hollowood, 2019). Brandon

Kelly produced a Bayesian method that meets these requirements. The program is called

linmix. Determining the parameters in the linear regression directly is not appropriate as it

is a too intensive process. Instead, the linear relationship is determined through a likelihood

function (Kelly, 2007). A Gibbs sampler is used to do this. First, the Gibbs sampler cre-

ates additional data points based on the known data points. This process is known as data

augmentation (Kelly, 2007). The sampler then simulates the regression parameters followed

by the mixture parameters. The parameters are saved, and the process is iterated with the

past values being accounted for. This iteration is done many times creating a Markov Chain
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which eventually converges. Histogram estimates based on the random draws can be used

to estimate the posterior distribution meaning regression parameters with their relevant

errors can be identified (Kelly, 2007).

Clusters with the same underlying properties can have a variety of observed prop-

erties. For example, not all clusters with a given mass will have the same richness or

luminosity. The regression only gives the average relation and clusters will scatter around

this relation even if there is no error in the observables. This scatter is called intrinsic

scatter and Brandon Kelly’s program accounts for this. The output of linmix is the slope

and intercept of the line along with the value of intrinsic scatter. The output plot for the

posterior distribution can be found in the Results section in Figure 4.2, and this shows how

the values for slope, intercept, and intrinsic scatter were reached along with the estimates

for their errors.

3.2 CluStR Code

A code is required to first download the detected red sequence clusters along with

their observables, create cuts on nonviable clusters, then create a linear regression using

Brandon Kelly’s program linmix, and lastly the results from linmix are used to make a plot.

I wrote a code called CluStR that does this with Jose Jovel, mentored by Spencer Everett.

The new code was written so that it could be easily used to serve other purposes in the

future—it was softcoded. Currently it is used in conjunction with the previously mentioned

program linmix, but since it is softcoded, other programs could be used instead. The user

has more options; for example, they can set their own parameters before they run the code.

The following section further outlines the details of the code along with how to use it.



12

3.2.1 Inputs

When running the code, inputs are required. The first input is the chosen catalog

of galaxy clusters. As previously mentioned, data from DES Y3 was used for our purposes

and run through redMaPPer and MATCha then manually examined to create the catalog

being used. The second input is the choice for the x-axis. The options can be adjusted

depending on the catalog being used, but for our catalog they are set to be from the column

names which include: 500 kiloparsecs band lumin, r2500 band lumin, r500 band lumin,

r500 core cropped band lumin, 500 kiloparsecs temperature, r2500 temperature, r500 tempurature,

r500 core cropped temperature. For the column names, r2500 temperature and r2500 band lumin

for example refer to the temperature and luminosity respectively inside r2500 regions as de-

termined by MATCha. The shorthand versions of these are what are entered into the

terminal for simplicity, they are as follows: l500kpc, lr2500, lr500, lr500cc, t500kpc, tr2500,

tr500, tr500cc, and lambda. Shorthand versions can be changed by the user. The third

input is the y-axis. The fourth input is the configuration (config) file.

The config file we created that contains parameters for the CluStR program. For

our purposes, some of the settings are intended to remain unchanged, while others are meant

to be changed by the user as needed. The value in having a file that has a wide range of

parameters programmable by the user is to make the code more versatile. Different catalogs

with different column names can be set, other programs beside linmix can be used, the range

option can be adjusted, the cutoff option can be changed, the Boolean flags can be chosen,

and there are options regarding the plots to be made and which ones to save. To remove data

with a given Boolean flag, set the chosen flag and then set it to ‘True.’ For the ‘Cutoff Flag’

section in the config file, set the first option to ‘True,’ then set the cutoff to the integer value
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desired and set the cutoff type to ‘above,’ or ‘below.’ For the flag option ‘Range Flag’, set

the third option to ‘True’ to activate it, then set the minimum and maximum range values

and set the range type to ‘inside’ or ‘outside.’ To have a plot be made and saved, the user

needs to set the plots they want to ‘True.’

The fifth input requirement is the plotting library. The plotting file used for this

project was made by Spencer Everett in 2017 with minor edits done more recently. There

are several settings in the config file that dictate how this library will run and what plots

will be made as previously mentioned. Currently the code can produce scatter, residuals,

chains, and corner plots. Examples of the scatter plots can be found in the results section.

3.2.2 How CluStR Works

In the CluStR code itself, after collecting all the appropriate inputs and loading

and opening the needed catalog, config file, and plotting file, cuts are made on the unwanted

data in the function titled ‘create cuts.’ All flags that are determined by what the user sets

in the config files are removed from the data by this function. The cuts I made for this

project will be explained in section 3.2.3. There are three types of possible flags for our

purposes, they can be Boolean, cutoff, or range. The Boolean flags refer to the ‘True’ or

‘False’ options. Range flags remove data inside or outside the range setting which is a

redshift range for our purposes, and cutoff flags removes data above or below the cutoff.

The option of ‘inside’ or ‘outside’ for the range or ‘above’ or ‘below’ for the cutoff is set

in the config file as previously mentioned. The code loops through the possible flags set in

the config file under the Boolean type flags and identifies which flags are set to ‘True.’ The

process is then repeated for data not ‘inside’ or ‘outside’ the redshift range. It is repeated
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once more for data ‘above’ or ‘below’ the cutoff. It then loops through the catalog and finds

any data that has any of these flags. The user is notified how many clusters have each given

flag. The rows that have no flags in them, which we called ‘good rows’, are now known

and everything else is removed from the x and y data. The x and y errors, ‘x err’ and

‘y err’ respectively, can then also be determined. The data is scaled using the ‘scale data’

function–it is put into log space, so the fit is linear and simpler to analyze. Linmix is then

run with the inputs being x, y, x err, and y err all in log space, to determine an equation

for a line appropriate to the data along with a value of sigma, the scatter. The final step is

to create a plot using the good data, the results from linmix, and the plotting file uploaded

by the user. These plots can then be further analyzed.

3.2.3 Flags

I removed data that contained the Boolean flags masked, bad mode, edge r2500,

overlap r2500, edge bkgd, overlap bkgd, and overlap r500. In the config file each of these

have ‘ bool type’ appended at the end. Clusters that are marked ‘masked,’ are clusters

that are not actually a redmapper cluster but were falsely identified as one by MATCha

because there is a bright X-ray cluster along the same line of sight to the redmapper cluster.

We want clusters to be detected by Chandra in an imaging mode, and those that are not

are flagged as ‘bad mode.’ Clusters that were not entirely on the CCD are flagged as

‘edge r2500.’ For the flag ‘overlap r2500,’ the correct cluster was analyzed, but a nearby

cluster is contaminating the observation. The second cluster was within the r2500 aperture

of the analyzed cluster. Removing the following two flags is more conservative. The flag

‘overlap bkgd’ refers to clusters that are overlapping, but the second cluster is within the
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background region of the analyzed cluster. The flag ‘overlap r500’ is the same as the flag

‘overlap r2500,’ except the nearby cluster is within the r500 aperture. In addition to Boolean

flag cuts, I also made cuts on data that had a signal to noise ratio higher than nine. This

is done using the cutoff option and setting the cutoff to 9.0 and setting the cutoff type to

below. I ran two fits, one with a redshift range from 0.0 < z < 1.0 and one with a more

conservative range from 0.2 < z < 0.65. With these cuts made, out of the 1092 galaxy

clusters in the catalog, only 137 galaxy clusters remained for the larger redshift range and

98 remained for the more conservative range. The remaining galaxy clusters are used in the

analysis.
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4

Results

The data used for the fit I produced was from DES Y3. The program redMaPPer

was used to group the galaxies into clusters and then identify each cluster’s redshift before

MATCha finds the temperatures and luminosities for each galaxy cluster. The program

CluStR can then be run with the proper inputs. The x-axis for our purposes is chosen

to be lambda, the richness. I chose tr2500 for the y-axis. The X-ray temperature within

an r2500 region was chosen because temperature is a better measure of cluster mass than

the luminosity because it has a lower intrinsic scatter. With these options, along with the

libraries included on the CluStR repository, the code can be run. The flags used by CluStR

to remove problematic clusters for this fit included 39 clusters with the flag masked, 9

flagged bad mode, 41 flagged edge r2500, 7 flagged overlap r2500, 52 flagged edge bkgd, 27

flagged overlap bkgd, and 15 clusters were flagged overlap r500. In addition to the Boolean

flags identified, 840 clusters were cut due to their signal to noise ratio being below 9. I

am running two fits, the first is without a redshift cut and the second has a cut based

on redshift. Both fits have the same cuts besides the redshift. I am doing both fits to
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discover if the results are consistent. It may be beneficial to cut the lower redshift clusters

because the galaxy clusters with lower redshifts were not the primary focus when data was

being taken. A filter that is blue enough was not used. As previously mentioned, the

thickness of the CCDs was intended for detecting larger redshifts. In addition, richness is

less accurate at higher redshift due to the difficulty in detecting fainter galaxies. To account

for this, redMaPPer makes estimates for the likely amount of galaxies in the cluster. These

things lead to higher uncertainty in the lower and higher redshifts. Though this is true, in

past results, setting the redshift range to these more conservative values has not shown a

significant difference in results (Hollowood, 2019). For my fits, the redshift range 0.0 < z <

1.0 no clusters are cut due to redshift. After all cuts were made under this redshift range,

272 of the remaining clusters did not have a value for the X-ray temperature within an r2500

region so those were also cut. For the redshift range 0.2 < z < 0.65, 667 galaxy clusters

are cut due to the redshift. After the final cuts, 194 clusters did not have temperature

values, so they were removed. Some galaxy clusters have multiple of each flag meaning the

total identified flags is larger than the number of cuts made. 137 galaxy clusters out of the

initial 1092 clusters remained for the large redshift range and 98 clusters remained for the

conservative range after the code was run. The two plots of the Tx-λ scaling relation are

displayed in Figure 4.1.

The relations derived by the CluStR code alongside Brandon Kelly’s code linmix

are in the form ln(E(z)
−2
3 kbTxr2500) = αln( λ

λpiv ) + β where λ is the richness of the cluster,

and λpiv is the pivot point. We chose the pivot point to be the median of the richness

data points. The X-ray temperature is normalized by the factor E(z)
−2
3 kb where kb is the

Boltzman constant and E(z) is the dimensionless Hubble Parameter. E(z) = H(z)/H where
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Figure 4.1: The Tx – λ relation for an r2500 aperture that has no redshift cut applied is
shown on the left. The plot on the right is under the redshift range 0.2 < z < 0.65. The fit
for these plots have no significant difference between the intrinsic scatters or the slope, but
there is a slight difference in the slope. The shaded region represents the intrinsic scatter
of the line.

H is the Hubble constant, which we are accepting to be 70kms−1Mpc−1, and H(z) is the

Hubble parameter at a given redshift. The results for these fits are summarized in Table

4.1. For the Tx – λ relation for an r2500 aperture with the redshift range 0.0 < z < 1.0, we

determined the relation

ln(E(z)
−2
3 kbTxr2500) = 0.54 ± 0.06ln(

λ

λpiv
) + 2.02 ± .02 (4.1)

The intrinsic scatter and its uncertainty were measured to be σintr = 0.24 ± 0.02 meaning

sigma is measured to within 8 percent. Our data has been normalized to our pivots, and

for this relation I determined λpiv = 103. For the Tx – λ relation for an r2500 aperture with

the redshift range 0.2 < z < 0.65, we determined the relation

ln(E(z)
−2
3 kbTxr2500) = 0.54 ± 0.07ln(

λ

λpiv
) + 2.09 ± .03 (4.2)

The standard-deviation-of-intrinsic-scatter was measured to be σintr = 0.26±0.02 meaning

sigma is measured to within 8 percent. For this redshift range, I determined λpiv = 117. The

values for sigma and slope for the conservative redshift range have no significant difference
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between the values where there are no cuts based on redshift. The intercepts are however

not within range, but the values are still close. There are several outliers with large error

that were removed with the redshift cut that cause this slight difference in results.

Dataset Redshift α β σintr

DES Y3 0.2 < z < 0.65 0.54 ± 0.07 2.09 ± .03 0.26 ± 0.02

DES Y3 all 0.54 ± 0.06 2.02 ± .02 0.24 ± 0.02

Table 4.1: Tx – λ relations for an r2500 aperture determined using DES Y3 data.

Dataset Redshift Range α β σintr

DES Y1 (A. Farahi et al., 2019) 0.2 < z < 0.70 0.56 ± 0.09 X 0.260 ± 0.032

SDSS (Hollowood et al., 2019) all 0.54 ± 0.04 1.82 ± 0.02 0.26 ± 0.02

SDSS (Hollowood et al., 2019) 0.1 < z < 0.35 0.52 ± 0.05 1.85 ± 0.03 0.27 ± 0.02

Table 4.2: Tx – λ relations for an r2500 aperture for other samples in different redshifts are
displayed.

A. Farahi et al. (2019) produced similar results for DES Y1 under the redshift

range 0.2 < z < 0.70 also using Chandra data that are displayed in Table 4.2. This study

determined the slope to be 0.56 ± 0.09 and the residual scatter to be 0.260 ± 0.032. The

value for intrinsic scatter is closest to the intrinsic scatter determined for our redshift range

for 0.2 < z < 0.65, but both values for intrinsic scatter I determined are within the error

range determined by A. Farahi et al. Both values we determined for the slope are also well

within the error range determined by A. Farahi et al. They did not directly report their

results for the intercept. There was no data for an unrestricted redshift range.

In a separate study conducted by Hollowood, Jeltema, Chen, et al. (2019), similar

results were also produced for redMaPPer clusters in the previous SDSS survey which can

be seen in Table 4.2. For all redshifts, the slope was determined to be 0.54 ± 0.04 which is

the value we determined it to be except we had slightly larger errors. Hollowood, Jeltema,
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Figure 4.2: This is an example of the posterior distribution for the restricted redshift range.
A Markov Chain is simulated that begins a random walk saving each point as it goes along
creating the posterior distribution. This means the regression parameters along with their
errors can be estimated as displayed. The posterior distribution may not be the same each
time it is run since it is a likelihood function based on random draws, but they are very
close.
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Chen, et al. determined the intercept to be 1.82 ± 0.02. My value for intercept under all

redshifts is not within their error. The intrinsic scatter was estimated to be 0.26 ± 0.02

which is within our error. Their study also examined a narrower redshift range than our

restricted redshift range where 0.1 < z < 0.35. The slope was determined to be 0.52± 0.05

and our value, though the redshift range is different, is well within the error ranges. The

intrinsic scatter was found to be 0.27± 0.02 which agrees with my value of intrinsic scatter.

They identified the intercept as 1.85±0.03 and my value for intercept is again not within the

range. There is a slight disagreement in normalization–the values for richness between the

different samples are not exactly the same, which could contribute to the shift in intercept.

The data agrees well with my values for the slope and intrinsic scatter, but are slightly

different for the intercept values. In the study conducted by Hollowood, Jeltema, Chen, et

al., it was concluded that there is no significant difference between the equations of a line

for all redshifts and for the redshift range where 0.1 < z < 0.35. The two equations were

within the error range. My two equations were only slightly different due to the intercepts

not being within the error range.
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5

Summary

For this thesis I created fits for the relationship between cluster observable prop-

erties while including their scatter using the program CluStR that I wrote with Jose Jovel

to create plots that can be used to understand the density of dark energy throughout time.

The code was created with the intention of it being used for other projects in the future.

Parameters can be changed by the user to make it more versatile. Before the code is

implemented for my purposes, galaxies mapped by DES were grouped into galaxy clus-

ters by redMaPPer which also identified the estimated redshift and richness of each cluster.

MATCha is then implemented and galaxies are compared to Chandra data to find the X-ray

temperatures and luminosities of the clusters. Tesla Jeltema’s research team then manually

examined the clusters to identify flags. The clusters with the information determined are

then put into catalogs so the clusters can be further narrowed down to the appropriate

data and fit using the program CluStR. The Tx – λ scaling relation for the r2500 region

with no cut on redshift was determined to be ln(E(z)
−2
3 kbTxr2500) = 0.54 ± 0.06 ln( λ

λpiv ) +

2.02± .02 and the standard-deviation-of-intrinsic-scatter was determined to be 0.24± 0.02.
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In addition, the Tx – λ scaling relation for the redshift range 0.2 < z < 0.65 was found

to be ln(E(z)
−2
3 kbTxr2500) = 0.54 ± 0.07 ln( λ

λpiv ) + 2.09 ± .03 and the standard-deviation-

of-intrinsic-scatter was determined to be 0.26 ± 0.02. The redshift cut did not change the

slope or value of sigma, but it did slightly increase the intercept. Where as in past results

there was no significant difference between slope, sigma, or intercept with a change in the

redshift range. This minor difference in my fits could be due to several outliers that were

cut due to the redshift range.

The program CluStR can be used for a variety of future projects that wish to

create a linear regression. Before any more projects are started, minor edits will be made to

the program CluStR to make the code more organized and run more quickly. These edits

will not change any results. As soon as CluStR has been edited, the code will be used for

the DES Y3 X-ray follow up paper which will include both the Chandra data described here

and XMM data. Fits of Lx versus λ will also be included for this upcoming project.
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K. W., Miquel, R., Muñoz, F., Neilsen, E. H., Nichol, R. C., Nord, B., Ogando, R.,

Olsen, J., Palaio, N., Patton, K., Peoples, J., Plazas, A. A., Rauch, J., Reil, K., Rheault,

J. P., Roe, N. A., Rogers, H., Roodman, A., Sanchez, E., Scarpine, V., Schindler, R. H.,

Schmidt, R., Schmitt, R., Schubnell, M., Schultz, K., Schurter, P., Scott, L., Serrano,

S., Shaw, T. M., Smith, R. C., Soares-Santos, M., Stefanik, A., Stuermer, W., Suchyta,

E., Sypniewski, A., Tarle, G., Thaler, J., Tighe, R., Tran, C., Tucker, D., Walker, A. R.,

Wang, G., Watson, M., Weaverdyck, C., Wester, W., Woods, R., Yanny, B., & DES



26

Collaboration (2015). The Dark Energy Camera. , 150(5), 150.

Fruscione, A., McDowell, J. C., Allen, G. E., Brickhouse, N. S., Burke, D. J., Davis, J. E.,

Durham, N., Elvis, M., Galle, E. C., Harris, D. E., Huenemoerder, D. P., Houck, J. C.,

Ishibashi, B., Karovska, M., Nicastro, F., Noble, M. S., Nowak, M. A., Primini, F. A.,

Siemiginowska, A., Smith, R. K., & Wise, M. (2006). CIAO: Chandra’s data analysis

system. In D. R. Silva & R. E. Doxsey (Eds.), Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, volume 6270 of Society of Photo-Optical Instrumen-

tation Engineers (SPIE) Conference Series (pp. 62701V).

Hollowood, D. L., Jeltema, T., Chen, X., Farahi, A., Evrard, A., Everett, S., Rozo, E.,

Rykoff, E., Bernstein, R., Bermeo-Hernandez, A., Eiger, L., Giles, P., Israel, H., Michel,

R., Noorali, R., Romer, A. K., Rooney, P., & Splettstoesser, M. (2019). Chandra Follow-

up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline. , 244(2), 22.

Kelly, B. C. (2007). Some aspects of measurement error in linear regression of astronomical

data. arXiv:0705.2774 [astro-ph], (pp. 1–20).

Lahav, O., Calder, L., Mayers, J., & Frieman, J. (2020). The Dark Energy Survey. WORLD

SCIENTIFIC (EUROPE).

Paul P. Plucinsky, Akos Bogdana, H. L. M. & Tice, N. W. (2018). The complicated evolution

of the acis contamination layer over the mission life of the chandra x-ray observatory.

arXiv:1809.02225 [astro-ph.IM], (pp. 1–13).

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G.,

Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim,



27

M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C.,

Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B.,

Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg,

H. J. M., Couch, W. J., & Project, T. S. C. (1999). Measurements of Ω and Λ from 42

High-Redshift Supernovae. , 517(2), 565–586.

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M.,

Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M.,

Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C.,

Suntzeff, N. B., & Tonry, J. (1998). Observational Evidence from Supernovae for an

Accelerating Universe and a Cosmological Constant. , 116(3), 1009–1038.

Rykoff, E. S., Rozo, E., Busha, M. T., Cunha, C. E., Finoguenov, A., Evrard, A., Hao,

J., Koester, B. P., Leauthaud, A., Nord, B., Pierre, M., Reddick, R., Sadibekova, T.,

Sheldon, E. S., & Wechsler, R. H. (2014). redMaPPer. I. Algorithm and SDSS DR8

Catalog. , 785(2), 104.

Rykoff, E. S., Rozo, E., Hollowood, D., Bermeo-Hernandez, A., Jeltema, T., Mayers, J.,

Romer, A. K., Rooney, P., Saro, A., Vergara Cervantes, C., Wechsler, R. H., Wilcox,

H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bernstein,
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