
Sorting an Array Using the Topological Sort

of a Corresponding Comparison Graph

April 2020

Balaram D. Behera

bbehera@ucsc.edu

Computer Science &
Engineering Department

University of California
Santa Cruz

Abstract

(Non-technical) The quest for efficient sorting is ongoing, and traditionally it deals with a
linear algorithm on arrays. In this paper we will explore strategies to sort using graphs,
and achieve a sorting algorithm on par with mainstream sorting algorithms. We will state
many theorems reflecting to specific properties required for our method of sorting.

(Technical) The quest for efficient sorting is ongoing, and we will explore a strategy to sort
employing comparison graphs. We use the topological sort of comparison graphs to map a
graph to a linear domain, and we can manipulate our graph such that the topological sort
is the sorted array. There exist many relations between Hamiltonian paths and topological
sorts in comparison graphs which we take advantage of to achieve a Divide-and-Conquer
algorithm that runs in O(n log n) time which is at the lower bound of all sorting algorithms.
Furthermore, using graphs as a sorting data structure can prove to be more efficient than
multiple arrays since arcs can hold immense amounts of information for their costs.

1 Introduction

Most sorting algorithms run a multitude of array com-
parisons, and from those results we decide how to ma-
nipulate the elements to eventually achieve a sorted
ordering of elements. This process can be implemented
and infused with all kinds of data structures. In par-
ticular, directed graphs are a great way to structure
this problem, and this allows us to look at sorting in
different light and realize new methods of sorting.

We can represent every element as a vertex and the
result of every comparison as an arc. Thus we can con-
struct a graph that essentially stores all the compar-
isons made. In fact, we can mathematically represent
these comparisons as an order relation: construct an
arc if and only if the origin is less than the terminus
(in the case of distinct array elements). Now we must
decipher such a graph, i.e. to find some meaning to
all those arcs that we have created. Our end goal is
to achieve a sort of our input array, and in this paper

we plan to achieve this using the topological sort of the
graph (defined later).

We will employ basic ideas of graph theory, the
Depth-First Search algorithm, and the topological sort
to efficiently sort an array using directed graphs. We
will first explore a somewhat trivial way to solve this
problem, and then build a more efficient algorithm that
will give us an equivalent result.

2 Definitions

Let us define a few terms that will be used frequently
throughout the course of this paper. First let’s define
the family of graphs we specifically are working with.

Definition 1. Let G = (V,E) be a directed graph with
vertex set V and edge set E. Let V = {1, . . . , n} where
n is the order. Let the following set A = {a1, . . . , an}
represent the values of their corresponding vertex. Let

1

the edge (u, v) ∈ E for vertices u and v if and only if
au < av. Then the graph G is a comparison graph.

Remark. We often consider the corresponding set A as
the given array itself.

Let’s define the topological sort which is the basis of
this entire paper.

Definition 2. Let G be a directed acylic graph with
order n. Let S = (s1, . . . , sn) be a sequence of all ver-
tices such that for all 1 ≤ i ≤ n, the vertex si is not
adjacent to vertices sk such that 1 ≤ k ≤ i. Then the
sequence S is a topological sort of graph G.

Remark. The topological sort of a graph is not neces-
sarily unique.

A term we will use to evaluate how close we are to
achieving a directed acyclic graph with a unique topo-
logical sort is trueness.

Definition 3. Let G be a directed acyclic graph, and
let S represent a topological sort of G. The number of
elements in S that are not fixed, i.e. their immediate
adjacent neighbors (previous and next element) are not
unique, is the trueness of G, denoted by τ(G).

Remark. Note that the trueness is not a count of how
many topological sorts (that’s more of a combinatorial
extension), rather we count the number of elements in
the sequence that are not fixed.

Remark. A graph with only one topological sort has a
trueness of one, i.e. τ(G) = 1 as all vertices are fixed.

Remark. In general, we focus on improving the true-
ness, i.e. to decrease τ(G) rather than evaluate it.

Since we will be working with arrays and array com-
parisons, we may want to compare an element of an
array with some of its neighbors, so we have the fol-
lowing definition.

Definition 4. Let A be an array of size n, and let 1 ≤
i ≤ n. Let r be the comparison reach (or just reach) of
A. Then we compare A[i] only to A[i− r], . . . , A[i− 1]
and A[i + 1], . . . , A[i + r]. Note if an array index is
out of bounds, we wrap it around the array, i.e. A[−1]
means A[n− 1].

Remark. In other words, we wish to compare an el-
ement A[i] to the closest 2r neighbors (equally dis-
tributed on both “sides”).

Now we define a comparison graph called the cor-
responding graph that is a graph constructed from an
array and some chosen array comparisons.

Definition 5. Let G be a null directed graph, i.e. V =
{1, . . . , n} and E = ∅. Let A be an array, and r the
comparison reach of A. Then add (i, j) for all vertices i
and j such that A[i] < A[j] and such that j ∈ [i−r, i+r]
but j 6= i. Then G is a corresponding graph of A of
reach r.

Remark. A corresponding graph is a comparison graph,
where our value set A is the corresponding array. The
corresponding graph is simply a specific structure of
comparison graphs.

Remark. The initial ordering of the array can generate
different corresponding graphs, and different reach val-
ues also may generate different corresponding graphs.

Lastly, we define the directed Hamiltonian path
which is well-known, but we will repeat the definition
to aid with upcoming theorems.

Definition 6. Let G be a directed graph. Let P be a
path such that P includes all the vertices of G. Then
P is called a directed Hamiltonian path in G.

These definitions will come in play during the de-
velopment of theory in this paper. Moreover, we will
frequently use basic graph theory definitions of trees,
forests, connectedness, acyclicity, etc. which the reader
is assumed to know.

3 Preliminaries

Before we start diving into the algorithms let’s note
some important preliminary remarks, assumptions,
theorems, data structures, and algorithms that will be
used in this paper.

Concerning the reach of an array, we will mainly
study algorithms with a reach of one or for the sake
of simplicity. Constructing corresponding graphs with
higher reach values definitely generates more complex
graphs, but as we will see later, the algorithms con-
cerning those values may be more efficient. Also, we
will study the total reach which is a reach value equal
to the length of the array, and this will be used for the
trivial algorithm.

Throughout the paper all the theorems stated apply
to both comparison and corresponding graphs in most
cases. The only difference between the two is that the
corresponding graph has a defined reach whereas the
comparison graph has no such defined structure.

It’s important to note that for the sake of proving
correctness, we assume all arrays have distinct values
(later we will discuss what happens when this is not
the case).

2

Since we will be using the topological sort of graphs,
let’s first show that the graphs we are working with in
fact do have topological sorts.

Theorem 1. If G is a comparison graph, then G is
acyclic. Hence G is a directed acyclic graph.

Proof. Let G be a comparison graph of order n. We
must show that G is acylic. To the contrary, assume
G contains a cycle, call it C. Then for k ≤ n as the
length of C, let C = (1, . . . , k, 1) where i (for 1 ≤ i ≤
k) is a vertex in G and every two adjacent vertices in
C is a directed arc in C. Let ai also represent the
corresponding value for every vertex in G. Then by
the definition of a comparison graph, we have

a1 < . . . ak < a1

which is an obvious contradiction. Therefore, G is
acyclic, i.e. G is a directed acylic graph. �

We can now easily derive the following corollaries.

Corollary 1. If G is a comparison graph, then G has
a topological sort.

Proof. Let G be a comparison graph. By Theorem 1,
G is a directed acylic graph. Then by definition, G has
a topological sort. �

Corollary 2. If G is a corresponding graph of array
A with any valid reach r, then G is acylic and has a
topological sort.

Proof. Since every corresponding graph is a compari-
son graph with the value set being the array A, the
graph G necessarily has a topological sort following im-
mediately from Theorem 1 and Corollary 1. �

Although we can construct algorithms dealing simply
with the abstract mathematical definitions of graphs,
to implement these algorithms in practice, it’s imper-
ative to construct useful data structures to represent
graphs. We will use the adjacency list representation
of graphs where every vertex has a list of vertices adja-
cent to it. This data structure is very memory efficient
and easily accessible. In fact, we will be choosing cer-
tain orientations of this list to best cater to our needs
in our procedures.

We will be employing Depth-First Search (DFS) all
throughout this paper. It is assumed the reader has
firm knowledge of this procedure and understands its
applications. In summary, DFS means to travel deep
from a root vertex till we can only travel to a vertex
that has already been visited which is when we start

back-tracking to parent vertices to continue on a dif-
ferent traversal. Once we back-track to the root itself,
we have discovered that part of the graph and we do
the same process for some other unvisited root. In this
way we traverse the entire graph. The run-time of DFS
on some graph G is O(n + m) where n and m are or-
der and size of G, respectively. While running DFS we
keep track of parent vertices and start and finish times,
where the start time is the discrete time at which we
visit a vertex and a finish time is the discrete time at
which we finish visiting all its children. The follow-
ing theorem is the main reason DFS is relevant to our
purpose.

Theorem 2. Let G be a directed acyclic graph. Run
Depth-First Search (DFS) on G, and generate a stack
S where the top has the greatest finish time and the
bottom has the lowest finish time (ordered by decreasing
finish times). Then that stack S is a topological sort of
G [2].

We will take this theorem as is without proof [2].
This theorem is the backbone of many of the algorithms
we will study further in this paper.

Lastly, we will call the components of a directed
graph as the components of the underlying graph.
Hence, there is no conclusion about weak or strong con-
nectedness involved.

4 Construction of the Correspond-
ing Graph

The basis of sorting using graphs is to first construct
the graph. The definition of the corresponding graph
given before essentially lays out our method of con-
struction. Note that algorithms may vary immensely
depending on the reach, so we fix the comparison reach
for every algorithm. However, to preserve generality,
consider r to be the reach of an array A of n elements.
We will use the adjacency list representation for our
corresponding graph G of reach r on A. By definition,
we will be comparing A[i] with A[i + k] for all indices
1 ≤ i ≤ n and all k in the range 1 ≤ k ≤ r (not if
i+k > n, then we simple take i+k modulo n). In this
way we will loop through every single index i and make
the necessary comparisons. Note that although a reach
r denotes that we compare an element to the closest
r neighbors to the left and r neighbors to the right, it
is equivalent in practice to simply compare just the r
right neighbors or the r left neighbors.

However, before we implement a process to construct
the graph, it’s important to discuss the process of

3

adding an arc. We use the adjacency list operation,
and we can choose for the list to be sorted, reverse
sorted, or completely arbitrary (similar to a set). By
sorted, we mean with respect to the given array values.
Of course it benefits us that it is sorted, since we will
see that we normally want to traverse to the next small-
est valued vertex. We achieve this sorted invariant by
inserting every new vertex in the correct position in our
adjacency list so it remains sorted.

There are two strategies for this: a binary search in-
spired insert or an insertion sort inspired insert. For the
binary search inspired algorithm, the basic idea is that
we check the middle of the list and determine which
half the new vertex should be in, and in this way we
continue till there is only one spot. This has the con-
dition that it requires a fast way to access adjacency
list elements. On the other hand, the insertion sort in-
spired algorithm where the basic idea is to go through
the list from the first to last element and find where the
new vertex should fit. This algorithm is more versatile
and compatible with the general list data structure, so
use this. Moreover, the asymptotic run-time for our
algorithms is not affected by this choice.

4.1 Pseudo-code

Let’s first see the process of adding an arc using the in-
sertion sort inspired algorithm (note this is completely
independent of our construction process, it simply acts
as a method of our graph data structure). Let G be
our graph, A the array that has the values of the corre-
sponding graph G, and we want to add the arc (u, v).
Our adjacency list is represented by an array of doubly-
linked lists adj[] with general double-linked list and ar-
ray functionality. The following is the pseudo-code for
this process.

function AddArc(G,A, u, v)
w = adj[u].front
while adj[u].index > 0 do

if A[v] < A[w] then
Insert(adj[u], w.index, v)
G.size + +
return

if adj[u].index = adj[u].length then
Append(adj[u], v)
G.size + +

w = w.next

This particular function will keep the adjacency list
sorted in ascending order of values. This configuration
can vary depending on what is required for a parent
process.

To construct the graph, we will add an arc depending
on the value of the two elements being compared. Let A

be an array of n elements, and r the comparison reach
for the corresponding graph G of A. The following
is the pseudo-code of the algorithm described for the
construction.

function ConstructGraph(A,n, r)
G = null graph of order n
for i = 1 to n do

for k = 1 to r do
j = i+ k mod n
if A[i] < A[j] then

AddArc(G,A, i, j)
else

AddArc(G,A, j, i)

return G

Note that we assume A contains distinctly valued ele-
ments. Further this process is quite simple as it always
does the required number of comparisons.

4.2 Run-time

For adding an edge, the worst case is when we must
go through the entire adjacency list and then choose to
add the vertex to the end, since we need to compare
the new vertex with all the other elements. Let a be
the maximum length of the adjacency list that we wish
to add to, then our worst-case run-time for adding an
edge is Θ(a). Note that normally the worst run-time
is Θ(n) where n is the order of graph, but for our sake
we will keep the run-time in terms of a.

The construction of the graph is also a very simple
process. By definition, every vertex can only be ad-
jacent to a maximum of 2r vertices since that is our
comparison reach. Thus, we let a = 2r, i.e. maxi-
mum length of any adjacency list. Since we use the
compare-right-only method, for every element we add
r arcs. Lastly, we have n elements, and for each one
we follow this method. In summary, we have a naive
run-time of O(n · r · 2r) which equates to O(nr2) which
is quadratic in terms of r and linear in terms of n.

5 Properties of the Topological Sort

Before we discuss the core algorithms, let’s first explore
the properties and applicability of the topological sort
for our sorting problem. Firstly, let’s show that the
existence of the topological sort of the corresponding
graph being an actual sort of the array.

Theorem 3. Let G be a corresponding graph of the
array A. Then there exists a topological sort of G such
that it is the sequence of indices of the sorted array of
A.

4

Proof. Firstly, there exists at least one topological sort
in G by Corollary 2. Let A′ be the sorted array of A.
Let S be the sequence of indices in A such that the
A-values for the these indices in A′ are sorted. Then
our claim is S is a topological sort of G. Assume to the
contrary, that S is not a topological sort, i.e. it contains
a back-edge (i, j) such that i > j where i, j ∈ S, i.e.
indices of A. By definition of a corresponding graph, if
there exists an arc (i, j), then A[i] < A[j], then since
A′ is sorted, we conclude i < j which contradicts our
hypothesis. Hence, there exists such a topological sort
of G. �

We have the following immediate corollary that will
be important in some time.

Corollary 3. If there exists precisely one topological
sort of the corresponding graph G of the array A, then
that topological sort is the sequence of indices of the
sorted array of A.

Proof. From Theorem 3, we know there must always
exist a topological sort of G that is the sequence of
indices from the sorted array of A. Since there is only
one topological sort, it must be such a sequence. �

Now let’s work toward finding a case where there is
only one topological sort.

Lemma 1. There exists at most one Hamiltonian path,
i.e. a path that visits every vertex, in any comparison
graph (includes corresponding graphs).

Proof. By way of contradiction, assume there exist
two distinct Hamiltonian paths in comparison graph
G called H and H ′. Then there exists an arc e = uw ∈
E(H) − E(H ′) for vertices u and v. Then there must
exist an edge e′ = vw ∈ E(H ′) − E(H) for vertices v
and w since every Hamiltonian path must have an arc
for every vertex. Thus A[u] < A[w] and A[v] < A[w].
Without loss of generality, assume A[u] < A[v]. Note
the array A represents the A-values of G. Then in H,
we cannot visit v after visiting w since A[v] < A[w] and
all vertices after w in H also have greater value than
v. Thus we must visit v before we traverse the edge
e which follows that we cannot visit u again with the
same reasoning. This contradicts the hypothesis that
we visit v before u. Hence there can exist at most one
Hamiltonian path in G. �

Now we have enough material to show a relationship
between a Hamiltonian path and the topological sort
of some corresponding graph.

Theorem 4. If there exists a Hamiltonian path in the
comparison graph G (includes corresponding graphs),
then there exists precisely one topological sort of G.

Proof. Assume there exists a Hamiltonian path H =
(v1, . . . , vn) in the comparison graph G with corre-
sponding values from array A. Let S = (v1, . . . , vn),
i.e. the vertices in H in the same order. Our claim is
that S is a topological sort. By way of contradiction,
assume not, i.e. there exists an arc e = (vi, vj) where
i > j. In H there is a path from vj to vi since j < i by
definition of a Hamiltonian path and a corresponding
graph. Thus the arc e produces a cycle which contra-
dicts Corollary 2. Hence, there exists a topological sort
S of G if the graph contains a Hamiltonian path.

Now to show uniqueness, by way of contradiction,
assume there exists another topological sort

S′ = (v1, . . . , vk, uk+1, . . . , un)

distinct from S where uk+1 is the first element that is
different between the two sequences. So the value of
uk+1 is greater than vk+1 because otherwise S would
contain a back-edge. Then, ui 6= vk+1 for all k + 1 ≤
i ≤ n, so vk+1 6∈ S′ which contradicts our assumption
of S′ a topological sort since it doesn’t contain a ver-
tex. Therefore, there exists a unique, i.e. precisely one,
topological sort of G as claimed. �

Thus we can show the big theorem for this section
whose conditions we wish to satisfy through our algo-
rithms.

Theorem 5. If there exists a Hamiltonian path in the
comparison graph G (includes corresponding graphs)
with corresponding values from array A, then the topo-
logical sort of G is the sequence of indices of the sorted
array of A.

Proof. By Theorem 4, there is precisely one topological
sort of G, and by Corollary 3 that topological sort is
the desired sequence of indices as claimed. �

A Hamiltonian path in the comparison or corre-
sponding graph implies that we have an arc from a
vertex to the smallest greater value vertex, i.e. we have
an arc between adjacent elements in the sorted array.
Hence, we must either get to the point where we have
a Hamiltonian path in the corresponding graph which
makes it very easy to find the sorted array, or we de-
velop a method to find all the topological sorts and find
which one is the sorted array.

This paper will delve into the former strategy as we
wish to use DFS. The DFS algorithm is integral to the

5

first strategy because it gives an efficient method to
finding the topological sort, and since there should be
only one, we are done after running DFS.

5.1 Run-time of DFS

When we introduced DFS we mentioned its asymptotic
run-time is O(n+m) where n and m are the order and
size of the graph G on which we run DFS on. Let G be
a corresponding graph of array A with n elements and
a reach of r. Then the order for G is also n. We know
every vertex will be adjacent to or from precisely 2r
vertices by definition of the reach. Thus by the degree-
sum formula: ∑

v∈V (G)

deg(v) = n(2r) = 2m

∴ m = nr.

Thus the run-time of DFS on G, a corresponding graph,
is O(n+ nr) which equates to O(nr) since r is greater
than one.

However it is important to note that if any compar-
ison graph contains a Hamiltonian path and we start
DFS at the minimum value vertex, we only have a run-
time of Θ(n) for DFS which is the time it takes to tra-
verse the Hamiltonian path after which we have visited
every vertex as required.

6 A Trivial Algorithm

From Theorem 5 we know that if we can construct a
corresponding graph such that it contains a Hamilto-
nian path, it is a trivial process to find the sorted array.
The simplest method to achieve this is to construct the
most complete corresponding graph, i.e. we compare
every element of an array A with every other element
of A. In this way, our graph necessarily must contain a
Hamiltonian path; then we trivially we can determine
the sorted array. So let G be a corresponding graph
of array A of n elements with a reach of r = bn/2c,
i.e. we compare every element of A with the closest
2r ≥ n − 1 neighbors (there are n − 1 elements other
than the current). This graph G is the most complete
corresponding graph of A since we cannot add more
arcs. Now we can run DFS on G starting at the mini-
mum value element of A. Then we claim that the DFS
stack is the sorted array of A.

6.1 Pseudo-code

Let A be an array of n elements. Let FindMin(A)
return the index of the minimum value element of A

that runs in linear time. Secondly let DFS(A,S) be
the function that runs the DFS algorithm where S is
the order by which DFS does its uppermost visits, and
after the process is done S is the DFS stack. For us we
will have S = (x) where x is the index of the minimum
value element. Lastly, the procedure ToArray(A,S)
constructs an array from a list S of indices of A. Then
we have the following pseudo-code for the trivial algo-
rithm.

function TrivialGraphSort(A)
n = A.length
G = ConstructGraph(A,n, bn/2c)
x = FindMin(A)
S = (x)
DFS(G,S)
return ToArray(A,S)

Note that S is a stack, so that must be converted to
an array technically. The trivial algorithm is not very
complex as it simply fulfills the requirements of Theo-
rem 5 to achieve the sort with the most naive strategy.

6.2 Correctness

Before we delve into proving the correctness of the al-
gorithm, let’s define a term we have casually used.

Definition 7. Let G be a corresponding graph. If we
can’t add more arcs toG, it is a complete corresponding
graph, i.e. it is maximal with respect to arcs.

Now let’s prove an important statement related to
complete corresponding graphs.

Theorem 6. Every complete corresponding graph G of
array A of length n contains a Hamiltonian path.

Proof. Let v1 be the index of the minimum value ele-
ment of A. Then let vi be the smallest greater valued
index than vi−1 for all 1 < i ≤ n. Since G is a com-
plete corresponding graph and since for every i we have
A[vi−1] < A[vi], the edge vi−1vi is in G. Thus the path
P = (v1, . . . , vn) is in G and spans all vertices of G.
Hence P is a Hamiltonian path in G. �

Let’s show something about our particular case in
the trivial algorithm.

Proposition 1. If G is a corresponding graph of an
array A with n elements and reach bn/2c, then G is a
complete corresponding graph.

Proof. By way of contradiction assume that there ex-
ists an arc e = (i, j) that we can add to G where i and
j are indices. Then there are at most bn/2c elements
in between i and j in A since there are n− 1 elements

6

besides i or j. Thus e is in G which is a contradiction.
Hence G is a complete corresponding graph. �

Although the design of this algorithm is simple to
follow, let’s formally prove the correctness of the trivial
algorithm with the following theorem.

Theorem 7. Let A′ = TrivialGraphSort(A).
Then A′ is the sorted array of A.

Proof. In TrivialGraphSort, we first construct a
corresponding graph G of A of n elements with reach
of bn/2c. Proposition 1 guarantees that G is a com-
plete corresponding graph. Then by Theorem 6, we
know G contains a Hamiltonian path. Then we run
DFS starting at the minimum valued element which is
an end-vertex of the Hamiltonian path, which gives us
the topological sort which is the sequence of indices for
the sorted array of A by Theorem 5. Then we get the
actual array from ToArray which is necessarily the
sorted array A′ of A as claimed. �

Thus we have completed showing that this algorithm
indeed works where we sort an array using a corre-
sponding graph and its topological sort.

6.3 Run-time

First we have r = bn/2c, so to construct the graph
we have a run-time of O(n(bn/2c)2) by a previously
stated formula, which equates to O(n3). Next to find
the minimum, our function has a run-time of Θ(n). We
have size

m = (n− 1) + (n− 2) + · · ·+ (1)

=
n−1∑
k=1

(n− k)

= n(n− 1)− n(n− 1)

2

=
n(n− 1)

2

for G. But, since G contains a Hamiltonian path and
we start at the minimum value vertex, we actually have
a run-time of Θ(n) for DFS in this case. Lastly to
convert to an array it has a run-time of Θ(n) obviously.
Therefore, in total we have a run-time of

O(n3) + Θ(n) + Θ(n) + Θ(n) = O(n3)

which is extremely inefficient since we also know the
algorithm runs in time Ω(n2) obviously too. However,
this algorithm mainly provides us with base strategy
that we can employ further in the paper.

6.4 Example

Let’s review an example of the above described algo-
rithm. Let,

A = [3.5, 2, 9, 11, 1,−2.2, 5].

Then our corresponding graph is,

3.5 2

9

11

1

-2.2

5

.

To construct we take at most 7 · b7/2c · 7 = 147 com-
parisons to construct the 21 edges of the above graph
since we must also account for the background work
of adding to the adjacency list. Now we run DFS on
our graph as specified for the algorithm (starting at the
minimum element). The bold path represents the path
of discovery:

3.5 2

9

11

1

-2.2

5

.

To run DFS we witness that it takes only 6 edge and 7
vertex traversals since there exists a Hamiltonian path.
Then our DFS stack is our sorted array:

A′ = [−2.2, 1, 2, 3.5, 5, 9, 11].

Thus we have sorted the array as desired using the triv-
ial algorithm. Notice that the most costly operation is
constructing the graph which is bounded at a whopping
147 array comparisons.

7 Properties of the DFS Forest

The DFS algorithm will visit vertices in some fashion
and the edges it uses to traverse the graph can be col-
lected into a forest.

Definition 8. Let G be a graph, and let F ⊆ G be a
graph with V (F) = V (G) and every edge e = uv is in
F if and only if DFS on G traverses that edge. Then
F is a resulting DFS forest of G.

7

Remark. We know every DFS forest is a forest because
DFS visits every vertex once which allows for no cycles.

Remark. Note that if G is a comparison graph, then
the resulting DFS forest F is also a comparison graph.
In this way, the DFS forest of F is also a comparison
graph.

It is assumed the reader has prior knowledge of DFS
forests and forests in general. Now let’s prove a point
that is the basis of our next algorithm.

Theorem 8. Let G be a comparison graph of array A,
and let F be the resulting DFS forest of G. Then any
path in F is a subsequence of indices from the sorted
array of A (not necessarily consecutive).

Proof. Since F ⊆ G, every arc e = uv in F has the
property that A[u] < A[v]. Let P = (v1, . . . , vk) be a
path in F where vi is a vertex for all 1 ≤ i ≤ k. Then
we have

A[v1] < . . . < A[vk]

which is necessarily sorted. Thus the path P is a sub-
sequence of indices from the sorted array of A. �

Note we will start abusing the notion of the con-
nected component (or general component) by having
it refer to the connected components of the underlying
graph of some directed graph. For our next theorem,
let’s first introduce some new definitions.

Definition 9. A rooted tree is a tree with a distin-
guished vertex called the root such that the root has
no incoming edges.

Remark. The root may also be the head of a Hamilto-
nian path in a comparison graph. This is just abuse of
the traditional definition.

Definition 10. A leaf of a rooted tree is an end-vertex
of the tree.

Definition 11. An internal vertex of a rooted tree is
a vertex of the tree that is not the root or a leaf of the
tree.

Remark. The connected components of a resulting DFS
forest are all rooted trees.

Now let’s show an important feature of correspond-
ing graphs of a reach one and their resulting DFS
forests.

Proposition 2. Let G be a corresponding graph of ar-
ray A and reach one, and let F be the resulting DFS

forest of G. Let T be any component of F . Then ev-
ery root of T has at most two outgoing arcs, every leaf
of T has at most one incoming arc, and every internal
vertex of T has one incoming and one outgoing arc.

Proof. First note that every vertex of G has a total
degree of two, i.e. the sum of the in-degree and out-
degree by definition of a reach of one. Then since F ⊆
G, every vertex of F has a total degree of at most two.
Let T be any connected component of F . Then since,
by definition, roots have an in-degree of zero, every
root of T can have at most two outgoing arcs. Since
we visit every vertex once in DFS, no vertex in T has
an in-degree of two, and by definition a leaf has no
outgoing arc, so it can have at most one incoming arc.
Since by definition, an internal vertex in T is not the
root or a leaf of T , so it has at least one incoming and
outgoing arc, and since our total degree is at most two,
necessarily every internal vertex in T has one incoming
and one outgoing arc precisely. �

Remark. Every rooted tree of F has at most two sub-
trees stemming from the root, and those sub-trees are
paths.

8 The Merge Process

We observed that in the trivial algorithm, the most
expensive procedure was to construct the graph which
took O(n3) time since the reach was dependent on n. If
r is fixed at a constant value, the run-time for construc-
tion simply becomes Θ(n) since run-time is O(nr2).
However, when we have constant r, the correspond-
ing graph does not necessarily contain a Hamiltonian
path. Hence, in this section we will develop a method
of tackling this issue.

Let G be the corresponding graph of array A with
constant reach r. Then by DFS on G we achieve a
DFS forest F which contains k connected components.
Now let’s say we merge the components in a way such
that new graph H and its resulting DFS forest F ′, have
dk/2e connected components. This idea will be more
refined into a concrete algorithm in the next section;
right now, we just want to develop such a merge pro-
cess.

There are many ways we can approach this problem,
but we will particularly attempt at merging pairs of
components to generate a component that contains a
Hamiltonian path. This is easier to tackle with a reach
of one since by Proposition 2, every tree in F has at
most two sub-trees stemming from the root. Let a ver-
tex v be the root of a tree T in F such that u and w are
the neighbors of v. Then we cannot conclude anything

8

about the order or values of the vertices in the sub-trees
that stem from u and w, call them R and S. Hence,
we should merge sub-trees of trees where they exist be-
fore we start merging the components themselves. By
Proposition 2, both R and S are paths, and we wish to
merge them into one graph H that is also a compari-
son graph such that we conserve the comparison edge
property and H contains a Hamiltonian path. It is im-
portant that H contains a Hamiltonian path because
then if we connect v to the beginning of the path in H,
we achieve a connected comparison graph with vertex
set V (T) and a Hamiltonian path.

Note we will use the term Hamiltonian path for in-
dividual components of a graph too from now on than
the traditional definition for the entirety of a graph.

The merge process will take advantage of the fact
that R = (a1, . . . , ax) and S = (b1, . . . , by) are paths.
First we will compare a1 to b1 and add the correspond-
ing arc between a1 and b1. Without loss of generality,
assume a1 has lesser value than b1. Then we compare
a2 to b1 and add their corresponding arc, and continue
this process till we find some ai that has greater value
than b1 for some 1 < i ≤ x. Then we compare ai to b2
and continue the process till we reach the end of either
R or S. Let the resulting graph of these operations be
H. Now we must show that H contains a Hamiltonian
path to satisfy our requirements for our merge process.

Theorem 9. Let T be a connected component of F ,
the resulting DFS forest of graph G. If T contains two
sub-trees stemming from the root, merge the two sub-
trees using the above process, then the merged graph,
call it H, contains a Hamiltonian path.

Proof. We will show that H contains a Hamiltonian
path by construction. Let v ∈ V (T) be the root of T ,
and let u1 and w1 be the two vertices adjacent from v.
Let P be our path to which we will add arcs. With-
out loss of generality, assume u1 has lesser value than
w1, so add the edge vu1 to P . Let u2 be the vertex
adjacent from u1 that is not w1 (must exist because
u1 and u2 are part of the same sub-tree of T). Then
if u2 has lesser value than w1, add the edge u1u2 to
P , else add u1v1 to P . In this way we construct our
path by adding an arc from the current vertex to an
adjacent vertex of minimum value. These “cross” arcs
between vertices exist since we have merged in a partic-
ular fashion which allows for their existence. Hence our
path P will eventually contain all the vertices, so it is
a Hamiltonian path by definition in H as claimed. �

Remark. The construction of this path is analogous to
how DFS would operate on H with a sorted adjacency
list representation of H.

Thus we have merged the sub-trees of T and achieved
a new comparison graph that contains a Hamiltonian
path. Any tree in F that has a root with only one
outgoing vertex is a Hamiltonian path itself. Thus the
process of merging pairs of connected components boils
down to merging paths, similar to above. However it is
important to know how to traverse only the Hamilto-
nian path of the connected components which is where
we take advantage of the sorted property of the adja-
cency list. We will now develop another merge process
for a pair of components that contain a Hamiltonian
path.

Let H1 and H2 be two components of H where ev-
ery component of H contains a Hamiltonian path. Al-
though we can find the Hamiltonian paths of both
graphs by running DFS on both individually, let’s sim-
ply start at the minimum valued vertices of both H1

and H2, call them a1 and b1. Now we compare the two
and add a corresponding arc. Without loss of general-
ity, assume a1 has lesser value than b1. Then let a2 be
the smallest value vertex adjacent from a1 (similar to
a recursive DFS visit), and compare a2 to b1 and add
the corresponding arc. Continue this process till we
reach some ai ∈ V (H1) that has value greater than b1.
Then we compare ai to b1 and add their corresponding
arc, and continue in the same fashion with bj ∈ V (H2).
We stop this process till we have no vertices adjacent
from the current one in either H1 and H2. We have
essentially followed the DFS strategy but added our
corresponding arcs in the process similar to the merg-
ing of the sub-trees. Lastly we must show that this
merge of H1 and H2 produces a graph that includes a
Hamiltonian path.

Theorem 10. Let F be a resulting DFS forest of G.
Let H = F if all components of F are paths, other-
wise merge the sub-trees of F and let H be the result.
Let H1 and H2 be a pair of two distinct components of
H. Then if we run the above mentioned process, our
resulting graph H ′ contains a Hamiltonian path.

Proof. If H = F , then H1 and H2 are Hamiltonian
paths, so let P1 = H1 and P2 = H2. Otherwise, by
Theorem 9, we know H1 and H2 contains Hamiltonian
paths, call them P1 and P2. Then traverse the graph
similar to how we merge, i.e. we only “cross” between
the two graphs when the direction of edges switches
between to the two graphs. Thus we get a path P that
starts at the minimum value vertex of both H1 and H2,
and then from there we continue to the next minimum
and so on. All these arcs exist due to our merge process.
Hence our resulting graph H ′ contains a Hamiltonian
path as claimed. �

9

Now let’s summarize the merge processes. In the
first, we run DFS on our corresponding graph G with
reach one, and let F be the resulting forest then merge
the sub-trees of the trees in F . And the second pro-
cess is to merge consecutive components of H such that
all the components of H contain Hamiltonian paths to
gain a new graph called H ′ which contains approxi-
mately half number of components in H as desired.
Also every component of H ′ contains a Hamiltonian
path. Note in practice, H will either be the DFS forest
itself or the graph after the sub-tree merge process on
the DFS forest.

8.1 Pseudo-code

In our case, we have two merge processes actually: one
that merges sub-trees and one that merges the compo-
nents. Notice that both these processes simply merge
on the Hamiltonian path starting at some root. In
the case of the sub-trees we let the two roots be the
neighbors of the root of the component. On the other
hand, when we merge the components let the roots be
the roots of the contained Hamiltonian paths. Again
we will use the adjacency list representation. So the
pseudo-code for this helper function is the following
where H is a modified version of the DFS forest, F ⊆ H
resulting from corresponding graph G of array A. Note
H is a comparison graph of array A.

function Merge(H,A, x, y)
u = x, v = y
while u 6= nil and v 6= nil do

if A[u] < A[v] then
AddArc(H,A, u, v)
u = adj[u].front

else if A[u] > A[v] then
AddArc(H,A, v, u)
v = adj[v].front

Note x and y are the roots that we define for that spe-
cific tree. When we traverse to the “child” of the cur-
rent vertex we are essentially traversing to the smallest
value vertex adjacent from the current one.

Before we discuss the main merge procedures, let’s
first find the components of some DFS forest, specifi-
cally their roots. After running DFS on some graph G,
all vertices in G with no incoming vertices will have no
parent from DFS. Note the converse is also true since
we start DFS from the minimum valued element which
necessarily is not the terminus of any arc. Thus all the
vertices after DFS that have no parent are the roots of
the components of the DFS forest. The following is the
pseudo-code for this algorithm given the resulting DFS
forest F .

function FindRoots(F)
roots = ()
for v ∈ V (F) do

if v.parent = nil then
Append(roots, v)

return roots

Note roots is a list. Also note that the list is in no
specific order; it is completely arbitrary.

Now that we have our helper functions ready, we can
delve into the actual merge process for a DFS forest F .
First for every connected component of F we will merge
the sub-trees if needed, i.e. if the root of the component
has a degree of 2.

function MergeSubTrees(H,A)
roots = FindRoots(F)
for r ∈ roots do

if adj[r].length = 2 then
x = adj[r].front
y = adj[r].back
Merge(H,A, x, y)

Note the roots of the components of H remain un-
changed.

Then we will merge consecutive components of F ⊆
H where every component of H contains a Hamiltonian
path. So we have the following psuedo-code for given
H and corresponding array A.

function MergeTrees(H,A)
roots = FindRoots(F)
for j = 1 to broots.length/2c do

p = roots.get(2j−)
q = roots.get(2j)
if A[p] > A[q] then

Delete(roots, p)
else

Delete(roots, q)

Merge(H,A, p, q)

return roots

We return the list of “new roots” in the merged graph
H. It’s important we get this list for our next algo-
rithm where we need the specific list and the number
of “roots.” Note that by roots we mean the roots of the
Hamiltonian path; a little abuse of terminology again.

8.2 Run-time

We will first analyze the run-time for the helper func-
tions before analyzing the main merge process. Let T
be a component of a DFS forest, and let T be of order n.
Let T1 and T2 be two sub-trees of T . Let their respec-
tive orders be n′1 and n′2 where n = n′1 +n′2 + 1 (where
the extra addition is for the root). To merge these

10

two graphs according to our merge processes, we are
essentially traversing the respective Hamiltonian paths
which are of the same order as their respective graph.
Every vertex can produce at most one arc originating
from it because after we create that arc we traverse
to another vertex. Hence, in the worst-case we pro-
duce an arc for every vertex (excluding the root), i.e.
we produce n′1 + n′2 arcs. Also since T1 and T2 have a
maximum of one outgoing vertex (otherwise they would
not be part of a sub-tree), the run-time to add an arc
takes Θ(1). Hence to add n′1 + n′2 arcs it takes time
O(n′1 + n′2) which is O(n− 1) which is the run-time of
the sub-tree merge.

Now let’s analyze the merging of any two compo-
nents that contain Hamiltonian paths. Let H1 and
H2 be these two components of order n1 and n2. In
the worst-case every vertex in H1 and H2 has at most
two outgoing vertices, thus to add an arc will still take
Θ(1). Again the worst-case merge of these two compo-
nents will be where we add an arc for every vertex, so
we have a total run-time of O(n1 + n2) in general.

To find the roots for a forest F we simply have a
run-time of O(|V (F)|) since it is only one loop, so it’s
linear with respect to the order.

Now for the main merge processes. Let k be the
number of components of some DFS forest F of order
n. In the worst-case, every component (tree) has two
sub-trees, so in total we have a run-time of O(n − k)
which is also the number of arcs in the original F . Since
1 ≤ k ≤ n, the merging of sub-trees takes O(n) time.

Then we must merge consecutive components of
some graph H (where every component of H contains
a Hamiltonian path), and in the worst-case we merge
to the fullest, i.e. we add every possible arc. Since we
merge consecutive trees, if we have n = n1 + · · · + nk
for ni the order of component i of H (1 ≤ i ≤ k), then
to merge all the trees is simply

O(n1 + n2) + · · ·+O(nk−1 + nk) = O(n)

assuming k is even (equal asymptotically when k is
odd). Hence, in general the merging of components
takes time O(n) as well. Thus for both merge processes
we take linear time to complete the procedures.

8.3 Example

Let’s illustrate the merge process we have just dis-
cussed. Consider the following forest with just two
trees:

−2.2

9 1

11

2

3.5

10.510 .

First we will merge the sub-trees:

−2.2

9 1

11

2

3.5

10.510 .

We add 3 more arcs to the forest to merge the sub-trees
which is definitely under the upper bound of 8− 2 = 6
arcs (the number of vertices that are not roots).

We continue using the merged components from
above; let’s merge two components together:

−2.2

9 1

11

2

3.5

10.510

.

We add 7 more arcs to our graph which again satisfies
our set upper bound of 8 − 1 = 7 arcs (the number of
vertices subtracted by 1). Thus the size of our graph
went from 6 to 6 + 3 = 9 and then eventually to 9 +
7 = 16 arcs. And these two steps complete the merge
process for a forest of only two trees. Of course with
multiple trees we just merge consecutive pairs of trees,
using this process.

9 A Divide-and-Conquer Algorithm

After the buildup of the merge process, it begs us to
discuss a Divide-and-Conquer algorithm. Most impor-
tantly, Theorem 10 suggests that if we can generate a
graph through a sequence of merges, we will end up
with a graph containing a Hamiltonian path, and The-
orem 5 asserts that the topological sort of that graph
is in fact the sequence of indices of the sorted array.
Thus our goal is to create an algorithm that generates
such a sequence of merges.

Let A be an array n elements which we wish to sort.
Also let G be a corresponding graph of an array A
with reach one. Let F be the resulting DFS forest of
G, and let F have k components which is in the range

11

1 ≤ k ≤ n. We first merge the sub-trees of the compo-
nents in F , and then we run the merge process on F to
achieve a graph H1 with dk/2e components, and note
each component of H1 contains a Hamiltonian path
(locally). Then we run DFS on H1 and let F1 be the
resulting forest which should also have dk/2e compo-
nents (we run DFS on the roots of the components of
H1). Again we run the merge process on F1 and get H2

with dk/22e. We continue this process till we achieve
an Fi such that Fi is a tree, i.e. we have only one com-
ponent. Let S be the topological sort of Fi which will
be our sequence of indices from the sorted array since
Fi is a Hamiltonian path (shown in the proof of correct-
ness). Therefore, to sort the array using our algorithm
it takes i merges, i.e. the number of components in Fi

is exactly one.

This algorithm is definitely a Divide-and-Conquer al-
gorithm. The division is the first run of DFS on the
corresponding graph of the array. The combine and
conquer part is the merge process which reduces the
trueness of our comparison graphs till we reach a true-
ness of one, i.e τ(Hi−1) = τ(Fi) = 1. Notice however
that the number of merges depends on the number of
components we have in F , the DFS forest of G, not the
order of G. Yet k is bounded by n, so in the worst case
we may achieve n components. Hence this algorithm
can perform less computations for certain graph distri-
butions; we will discuss the best-case run-time later in
this section.

9.1 Pseudo-code

First we construct our corresponding graph G of array
A of length n and reach of one. Then we must run
DFS for the first time to get the resulting forest F (we
assume DFS replaces the given graph, so technically
G = F). Note to run DFS here, the order we visit the
provisional roots can be arbitrary for the first time.
However, for the latter runs we must define the visit
sequence by the roots, so that in this way we actually
find the components of the graph. Then we merge the
sub-trees of F , and then merge the trees of F . We
continue this process till we have one component only,
i.e. a trueness of one (shown in proof of correctness),
which is when we stop, and then we run DFS for the
last time to get the topological sort. The following is
the pseudo-code for this algorithm.

function GraphSort(A)
n = A.length
G = ConstructGraph(A,n, 1)
S = (1, . . . , n)
DFS(G,S)

MergeSubTrees(G,A)
roots = FindRoots(G)
while roots.length > 1 do

roots = MergeTrees(G,A)
S = roots
DFS(G,S)

return ToArray(A,S)

Note that our DFS algorithm will essentially replace
the graph given with its resulting DFS forest. The
dynamics with the DFS stack remain the same as the
trivial algorithm. Also note that we need to merge the
sub-trees only once (at the beginning). We will explore
why we do this in the next part where we prove for
correctness.

9.2 Correctness

Before we prove for correctness let’s first prove why we
only merge the sub-trees at the beginning.

Lemma 2. Let G be a corresponding graph of an array
A with n elements and reach of one. Let F be the
resulting DFS forest of G. Then we merge the sub-
trees and components of F , and let H be the resulting
graph. Now run DFS on H with our visiting list as the
roots of H, and let F ′ be the resulting forest. Then, all
the components of F ′ are directed paths.

Proof. First from Theorem 9, we know that after merg-
ing the sub-trees of the components of F , the compo-
nents of the resulting graph H ′ contain a Hamiltonian
path. Now let’s merge the components of H ′ and let
the resulting graph be H. By Theorem 10, every com-
ponent of H contains a Hamiltonian path. Now let R
be the list of new roots, i.e. the roots of the Hamilto-
nian paths of components in H. Then if we run DFS
on H with our visit list as R, we discover each com-
ponent by traversing down the Hamiltonian path since
our adjacency list is sorted. Hence, our DFS forest F ′ is
a collection of disjoint paths which correspond to the
Hamiltonian paths of the components of H. There-
fore, all the components of F ′ are directed paths as
claimed. �

Corollary 4. If H ′ be the graph after merging the com-
ponents of F ′, then if we run DFS on H ′ on the roots,
the components of the resulting forest are all paths.

Proof. By Theorem 10, we know that the components
of H ′ contain Hamiltonian paths, so if we run DFS on
the roots of those paths, obviously the resulting DFS
forest is a graph of disjoint paths as claimed. �

12

Hence, we see that sub-trees in a secondary DFS for-
est will never exist, so we may ignore merging them
after the first run of DFS.

Also let’s conclude some properties of sequences of
merges on a particular forest along with DFS.

Lemma 3. Let F be a comparison forest with k compo-
nents where every component contains a Hamiltonian
path. Then let H be the resulting graph after running
the merge process (at the beginning both the sub-tree
merge and component merge and later just the compo-
nent merge) on F . Also if k > 1, H has fewer than k
components. In fact, for any k, F has dk/2e compo-
nents.

Proof. First if k = 1, then after the merge process, our
components cannot increase, so we still have 1 com-
ponent in H. Also d1/2e = 1, so the claim holds for
k = 1.

Assume k > 1, and let the components of F be
T1, . . . , Tk. Then the merge process essentially merges
the components T1 and T2, and then T3 and T4, and
so on. If k is even, the merge process will merge Tk−1
and Tk too. Thus the number of components in H, the
resulting graph, will be exactly k/2 which is equal to
dk/2e since k is even. On the other hand, if k is odd,
the merge process will merge Tk−2 and Tk−1, but not
Tk with any graph. Hence we do k−1

2 merges, so H has
k−1
2 + 1 components which is equal to dk/2e since k is

odd.
Lastly, assume k > 1. If k is even, then obviously⌈

k

2

⌉
=
k

2
< k

as required. If k is odd, then⌈
k

2

⌉
=
k + 1

2
< k

since k > 1, so k/2 > 1/2. Thus it holds that F ′

has fewer components than F if F has more than one
component. �

From the previous lemma it follows immediately that
we require a finite number of merges to reach one com-
ponent.

Corollary 5. There exists a finite sequence of merge
processes and DFS runs such that from our original
comparison forest F (of corresponding graph G) we will
get a resulting a comparison graph T that will have one
component, i.e. T is a tree.

Proof. Assume F has more than one component, be-
cause otherwise F is the tree T . Let F have k > 1

components, and let F1 be the resulting DFS forest of
the merged graph of F . Let k1 be the number of com-
ponents of F1. Then k1 < k by Lemma 3 since k > 1.
Now generate the graphs Fi for i > 1 in the same way,
and let ki be the number of components of Fi. Then
some ki = 1 since the sequence (k, k1, . . .) is a strictly
decreasing sequence until some ki = 1. �

Now let’s prove the correctness of our Divide-and-
Conquer algorithm with the following theorems.

Theorem 11. Let A be an array of n elements, and
let G be the corresponding graph of A with reach one.
Then let F be the resulting DFS forest of G. Then we
merge the sub-trees of F to get a comparison graph H ′.
Now let H1 be the resulting graph of the merge process
on H ′, and let F1 be the resulting DFS forest on H1

with the visiting list as a list of the roots of H1. Then
let Hi be the resulting graph by the merge process on the
forest Fi−1 for all i > 1, and let Fi be the resulting DFS
forest of Hi with the visiting list as a list of the roots
of Hi. Then we claim that there exists a finite i such
that Fi is a Hamiltonian path, and that the topological
sort of Fi is in fact the sequence of indices of the sorted
array of A.

Proof. First by Lemma 2, we know that the compo-
nents of F1 are all paths. Now H2 is the resulting
graph of the merge process on F1, and by Theorem
10 we know that the components of H2 all contain a
Hamiltonian path. Now we let the new roots of H1 be
the list R, and run DFS on H2 with the visit list as
R. By Corollary 4, the resulting DFS forest F2 is a
collection of disjoint paths, i.e. the components of F2

are all paths. Now we run the same process with F2

to generate F3 and so on till some Fi such that Fi is a
tree and that Fi−1 contains more than one component.
By Corollary 5, we verify the existence of such an i is
finite. By the above defined process for generating Fj

for some 1 < j ≤ i, all the components of Fj are paths.
Hence, Fi is necessarily a path since it is connected as
it has only one component which is necessarily a path.
Therefore, Fi is a Hamiltonian path, and necessarily
the topological sort of Fi is the sequence of indices of
the sorted array of A by Theorem 5. �

Corollary 6. If A is an array of n elements, then
A′ = GraphSort(A) is sorted.

Proof. Since the process of the algorithm is laid out
by Theorem 11, it immediately follows that we attain
the sorted array of A by calling GraphSort(A) as
claimed. Also the loop in GraphSort will terminate,
again by Theorem 11. �

13

This concludes our proof of correctness for our algo-
rithm. Note we have only shown that the loop in the
algorithm will terminate, and at that instant we have
sorted the array. In the next section, we will discuss
when that termination occurs.

9.3 Run-time

This analysis of the run-time will be a sequential anal-
ysis of the main procedures in GraphSort, and then
combine them to gain a full upper bound on the run-
time.

First recall that the run-time to construct a corre-
sponding graph for an array of n elements is O(nr2)
where r is the reach. Since our reach is one, our con-
struction takes time O(n) asymptotically.

Recall that the run-time to merge sub-trees is Θ(n)
in the worst-case where n is the number of elements.
On the other hand, also recall that to merge the com-
ponents of a comparison graph it takes time Θ(n) also.
Also to find the roots we have a time of Θ(n).

Now let’s discuss the run-time of DFS. For the first
run of DFS we do not know what our corresponding
graph looks like, so we use the general run-time of DFS
which is O(|V (G)| + |E(G)|) where G = (V,E) is our
corresponding graph. Obviously we have n vertices in
G because every element maps to a vertex. Further,
since we have a reach of one, we have an out-degree
of one for all vertices, so by the Degree-Sum Formula,
we conclude |E(G)| = n also. Hence the first run of
DFS runs in time O(2n) which is asymptotically equal
to O(n).

For the latter runs of DFS we assure that the given
graphs contain Hamiltonian paths, and our visit list for
DFS is a list of roots of those paths. Hence we never
do an unnecessary check for a vertex visited or not in
DFS, so our run-time is Θ(n) only.

Now let’s compute the number of times we go
through the main loop in our algorithm. In the worst-
case, we can have n components in our first resulting
DFS forest (this occurs only when the array is in re-
verse order). Then through our first merge process we
generate the next forest with dn/2e, and then the next
forest with dn/22e. This halts once we have one com-
ponent, i.e. after some i iterations we must have,

dn/2ie = 1

∴ i = dlog2(n)e.

Hence we are done merging and running DFS after
dlog2(n)e iterations in the worst-case.

Now that we have computed the run-time of all the
individual parts, it’s time to combine them. Prior

to the loop we first generate the corresponding graph
which has time O(n). Then we run DFS on that graph
which runs in time O(n). Then we merge the sub-trees
which also has run-time of O(n). And lastly to find the
roots we run in Θ(n) too. Thus all these parts have a
total run-time of

O(n) +O(n) +O(n) + Θ(n) = Θ(n)

which is linear. Then in the body of the loop, we take
time Θ(n) to merge the components, and then Θ(n) to
run DFS on them. So in total, the body takes time

O(n) + Θ(n) = Θ(n)

which is also linear. Also the loop in the worst-case
runs dlog2(n)e times which is logarithmic. And finally,
after the termination of the loop we convert our stack
into the sorted array which takes time Θ(n). Thus in
total, our Divide-and-Conquer algorithm runs in time

Θ(n) + (dlog2(n)e) ·Θ(n) + Θ(n) = Θ(n log n)

in the worst-case. In fact, Ω(n log n) is the asymptotic
lower bound of any comparison based sorting algorithm
for worst-case. Hence our algorithm is asymptotically
as efficient as any mainstream sorting algorithm.

In the best-case which is when we have a sorted array,
our corresponding graph itself contains a Hamiltonian
path, so by Theorem 5, we have already sorted the
array essentially without the loop. Hence we have a
run-time of Θ(n) in the best-case. Hence, in general
our algorithm runs in time O(n log n).

Additionally, the exact run-time in terms of basic
operations (comparisons), we have an approximate run-
time (in terms of basic operations) of

2n log2(n) + 4n

with many other computational optimizations added
to the existing algorithm which we won’t cover exten-
sively in this paper. One of the most efficient sorting
algorithms called QuickSort runs in approximately

2n ln(n) + 2 ln(n)− 4n

time. So our algorithm is log2(e) times slower than
QuickSort which is approximately 1.44×. Thus our
algorithm isn’t computationally ground-breaking, al-
though it can be inspiration for one. However we will
discuss later some advantages of such an algorithm in
practical applications.

14

9.4 Example

Consider the same array from before:

A = [3.5, 2, 9, 11, 1,−2.2, 5].

Then, we first make our corresponding graph of reach
one:

3.5 2 9 11 1 −2.2 5

.

We add 7 edges to construct the corresponding graph.
We will run DFS in the following order starting at−2.2,
the minimum valued vertex. Now we run DFS for the
first time (bold lines denote path of discovery):

3.5 2 9 11 1 −2.2 5

.

We traverse 4 arcs and visit all 7 vertices by running
DFS. We generate a DFS forest with 3 trees with roots
(−2.2, 3.5, 2):

3.5 2

9

11

1

−2.2

5

.

After the merge process on the above forest, we get:

3.5 2

9

11

1

−2.2

5

.

We add 5 arcs to merge which is under (7 − 3) + 7 =
11 (the maximum number of arcs we can add) by the
merge process. So our “new” roots are (−2.2, 2) since
the root 3.5 got merged. Now let’s run DFS again
starting at the new roots (note the list of roots being
sorted is irrelevant):

3.5 2

9

11

1

−2.2

5

.

Here DFS traverses 5 arcs and visits 7 vertices. Thus
we get the following DFS forest with 2 trees (paths in
this case):

3.5

2

9

11

1

−2.2

5

.

Notice they both are Hamiltonian paths. Then again
we run the merge process on this forest and our “new”
root is (−2.2) which is the minimum of the array also:

3.5

2

9

11

1

−2.2

5

.

We add 6 arcs to our graph which is at the upper bound
of 7−1 = 6 (number of vertices subtracted by 1). Now
we run DFS for the last time starting at the root −2.2
(the minimum value vertex):

3.5

2

9

11

1

−2.2

5

.

Here since the graph contains a Hamiltonian path we
have 6 edge traversals and visit 7 vertices. Also our
DFS stack is our sorted array as desired:

A′ = [−2.2, 1, 2, 3.5, 5, 9, 11].

Thus, we complete our Divide-and-Conquer algorithm.
Although visually the process is more extensive, its run-
time is much more efficient than the trivial algorithm.

10 Resemblance of MergeSort

The MergeSort algorithm is a quintessential Divide-
and-Conquer algorithm, and we will explore some sim-
ilarities between MergeSort and GraphSort.

15

Firstly the merge process for our algorithm is so sim-
ilar to MergeSort’s merge process, except in Graph-
Sort we traverse a path, whereas in MergeSort we
traverse sub-arrays. However, one big difference is that
in MergeSort we equally divide the array into sub-
arrays of length one and build them up from there. In
GraphSort, we generate a graph with a certain reach
and then after running DFS our “building blocks” are
essentially the components of the DFS forest. Our com-
ponents have no fixed size which differs from Merge-
Sort which is very organized and structures. This is
in fact an advantage of using graphs since we have to
perform less unnecessary overhead operations. Lastly,
in MergeSort we keep an invariant on sub-arrays
to always be sorted after a merge, and in our algo-
rithm the invariant is essentially Theorem 8. This is
in fact equivalent since we are dealing with compari-
son graphs which are essentially graphical depictions
of arrays which is what our corresponding graph tries
to accomplish actually.

These are the most apparent and relevant similarities
between the two. In fact, we see that we can mimic
MergeSort with our graphical strategy.

10.1 A Graph Version of MergeSort

In MergeSort we build up from sub-arrays of length
one, then two, then four, etc. So let’s generate our cor-
responding graph as such: we generate an arc between
consecutive pairs of elements using our same compar-
ison property. In this way every component after the
first run of DFS has exactly 2 vertices (except one if
we have an odd number of vertices). Thus we have
dn/2e components exactly in our first DFS forest. Then
we can continue the original GraphSort algorithm
with the same merging process to sort the given array.
Notice the only difference is that our components is
fixed at dn/2e rather than an arbitrary k in the range
1 ≤ k ≤ n. Let’s call this algorithm GraphMerge-
Sort.

10.2 Run-time

The worst-case for our algorithm was when we had n
components in our first DFS forest, but with Graph-
MergeSort, we guarantee dn/2e for any instance, i.e.
we guarantee only one less iteration of the loop in the
worst-case. Hence our total run-time adapted from the
run-time analysis for our algorithm is

Θ(n) + (dlog2(n)e − 1) ·Θ(n) + Θ(n) = Θ(n log n).

Hence, GraphSort and GraphMergeSort have
equal efficiency asymptotically, but one just guaran-
tees a certain number of iterations of the loop for our
algorithm and one depends on an arbitrary integer at
most n.

10.3 Example

Lastly, we analyze the GraphMergeSort algorithm
which merely differs in the first corresponding graph
construction. First consider the following array again:

A = [3.5, 2, 9, 11, 1,−2.2, 5].

Then our corresponding graph is the following:

3.5 2 9 11 1 −2.2 5 .

We only add 3 arcs this time which is approximately
half the number of array elements. Then we continue
the same process as for the previous algorithm, and
again with our last run of DFS, the stack gives us the
sorted array:

A = [−2.2, 1, 2, 3.5, 5, 9, 11].

This completes the GraphMergeSort example.

11 Practical Implementation

In this section we will focus less on the theory, but more
on the implementation of the theory discussed through-
out this paper. This is imperative to convey since
graphs can be represented by many data structures, so
understanding which methods are efficient. Further-
more, we can implement multiple computational opti-
mizations to reduce the memory load and operations
required. These were mostly skipped in the develop-
ment of the theory aspect since they add unnecessary
complexity and do not affect the conclusion vastly. We
will also discuss how we can tackle equal-valued ele-
ments in an array which hasn’t been discussed yet since
we have assumed distinct values up till now for the
ease in proving correctness. Also, we will explore some
machine dependent issues that we could face and how
we can tackle them. Lastly we will examine practical
applications of this algorithm and what advantages it
brings to the table relative to other efficient sorting
algorithms out there.

11.1 Data Structures

As we have used throughout the pseudo-code sections
of the paper, we will use the adjacency list represen-

16

tation of a graph. This is imperative since we tra-
verse through vertices rather than probing on edges as
a whole, so quickly accessing neighboring vertices is im-
portant. Moreover, we require our adjacency list to be
sorted according to corresponding value for both our
algorithms. We can implement this sorted invariant as
shown before by how we add arcs to the graph.

Graphs are a combinatorial mathematical structure,
so it is important we remain memory efficient in our
representations. Since every vertex has a limited out-
degree for our Divide-and-Conquer algorithm for the
least, an adjacency list for every vertex is thus more
memory efficient. We take Θ(n+m) space to represent
a graph of order n and size m.

11.2 Memory Optimizations

Following our focus on memory efficiency, when we run
DFS for the Divide-and-Conquer algorithm, we have
DFS generate our forest and replace the given graph
with the resulting forest. However, we do not necessar-
ily need to run secondary DFS operations; we included
it primarily to reduce complexity in proofs. Since when
we merge we essentially traverse the contained Hamil-
tonian paths of the components, any overhead of arcs
in the component will not affect the merge traversal.
Thus, we eliminate the middle uses of DFS; we still
need to run DFS on the corresponding graph and at the
end to gain the topological sort. Note this optimiza-
tion comes with a grain of salt, since now our graph
data structure will be larger in terms of memory, but
we limit alterations in the data structure as we use only
one rather than many (the intermediate forests).

In order to optimize the construction of the forest
separately, we can also implement a strategy where we
remove edges from the given graph while running DFS.
We won’t go into detail for a game plan to accomplish
this, but leave it to the reader to conceive. In the
same discussion of space, we can alter our method of
adding such that we delete those unnecessary arcs si-
multaneously. This can be done in situations where
have a list of consecutive vertices that all create an
arc to one vertex in the other component when we are
“moving” down a component in the process of merg-
ing. So instead of our process of generating an arc and
then “moving,” we simply compare the next vertex we
would “move” to with the vertex we would add an arc
to, and if we know we will “move,” we skip the addition
of that arc. This will reduce the number of “cross”-arcs
we have after merging, but it is much harder to also re-
duce the number of original arcs that already existed
but are deemed unnecessary after merging. Moreover,

this increases the number of comparisons to be made
during merging too. We leave the implementation of a
solution to the reader for the latter more difficult part.

11.3 Introducing Randomness

In QuickSort if our pivot choice is not random, let’s
say we choose the last element, then it’s easy to con-
struct an array that will force QuickSort to run in
worst-case time. However we tackled this by choos-
ing a random pivot element. Similarly, our algorithm
highly depends on the number of components in our
first DFS forest. As we saw in the worst-case we may
end up with a situation of n components. Our algo-
rithm has a DFS visit ordering that is arbitrary (in
the first run), and for simplicity we just go from the
first element to the last in order. However, if we im-
plement a completely random order we may achieve a
more consistent run-time overall.

If we assume that a random visit ordering implies
an equal probability that we have either k = 1, . . . , n
components, then in the average-case we have n/2 com-
ponents which is similar to our MergeSort version.
However this implication is probably false since DFS
will first visit all the reachable vertices from where it
started, and the fashion it reaches those vertices and
which vertices are visited in the process can alter the
upcoming DFS visits. Hence we save this uncertainty
with randomness and the average-case run-time analy-
sis for another time.

11.4 Dealing With Equal Value Elements

One of the biggest issues we have yet to discuss is what
does the algorithm do for equal value elements. All
the theorems and algorithms in the paper as of now as-
sume that our given array contains only distinct values.
This is important to satisfy our comparison property
which is a strict inequality. In the case of equal-valued
elements, we compare the indices of those elements in
the given array to determine which direction an arc be-
tween the two elements will go. Since indices are nec-
essarily distinct, we will never face an issue there, and
having this second condition for equal-valued elements
will still produce an order relation for our comparison
property. Note this issue is purely computational and
does not hinder with the basic algorithmic process or
theorems; we simply modify our ordering definition for
a comparison graph.

17

11.5 A System Bottleneck

An issue witnessed during an implementation of this
algorithm on massive arrays was that DFS would fail
midway. This is because DFS is recursive, and from
the second DFS run and onward (in the Divide-and-
Conquer algorithm) we are running DFS on disjoint
paths essentially which leads to very deep recursions
which may lead to a stack overflow on machines with
limited memory. We will discuss an iterative version
of DFS solely for scenarios where we are dealing with
forests of components that contain Hamiltonian paths,
and in fact we notice that we can translate this for our
first DFS run.

11.6 An Iterative DFS Solution

We will now discuss an iterative method of DFS for our
particular case. We assume that we are running DFS
on a comparison graph G such that every component of
G contains a Hamiltonian path. Also assume we have
a set of the roots of those Hamiltonian paths called R.
Recall that DFS will visit some start vertex, and then
visit a vertex adjacent to the start, and so on. Once
all neighbors of the current vertex have already been
visited, we “back-track” to its parent and check for
the same. Once we have reached the start vertex, and
we have no adjacent unvisited vertices, we stop DFS
starting from that root. Then we let our new start
be the next unvisited vertex in our visit list given and
continue the same process till we visit all the vertices.

The biggest problem with this algorithm is that with
our convention of the adjacency list, it becomes unnec-
essary to back-track as we have visited all the vertices
in a component once we have the need to back-track
since every component of G contains a Hamiltonian
path. Therefore, an iterative solution would be to start
at some vertex x ∈ R and then continue to the first
vertex y in the sorted adjacency list of x, and then
continue the first vertex z in the sorted adjacency list
of y, until we reach a vertex w where w has no adja-
cent vertices. Then it is sufficient to conclude that we
have discovered the Hamiltonian path starting at x for
the component since G has no back-edges since it is a
comparison graph. We run this iterative process for all
vertices in R, and the paths we generate are equal to
the DFS forest as required.

Note we can only do this when we know every com-
ponent contains a Hamiltonian path, so this can replace
all the DFS runs after the first. This can also trans-
late to our first DFS run since we have shown that
only roots of the trees in the resulting DFS forest may
have two vertices adjacent to them. Then we can start

this iterative process whenever we start discovering the
respective provisional sub-trees which we have shown
are paths. Thus we eliminate the recursive nature of
DFS for our particular algorithm which allows for more
versatility on machines with limited stack sizes.

11.7 Graphical Approach Advantages

During the discussion of the run-time of our algorithms,
it was mentioned that computationally, our algorithm
still lacks to perform as well as QuickSort, the leading
sorting algorithm right now. Also memory-wise, we
construct a separate data structure to sort which adds
extra overhead and cost. However, there do exist some
advantages of using the graphical approach.

Firstly, if there is a situation where we wish to sort a
comparison graph itself, which matches our algorithm’s
objective essentially, we can employ our merge tech-
niques and DFS to achieve a more true comparison
graph than the original. This eliminates the process of
converting a graph into a linear structure to sort using
a general sorting algorithm. Now we do not need to
transform the input as we can modify the graph itself.
Many applications use comparison graphs and directed
graphs to represent networks and what not, and our
algorithm provides a way to better detail those graphs
and rank the nodes of those networks in an efficient
manner.

Secondly, if the array distribution contains long in-
creasing sub-sequences, our algorithm can take full ad-
vantage of this feature which algorithms like Quick-
Sort and MergeSort fail to achieve. Furthermore,
some tailing computations as in other sorting algo-
rithms can be eliminated since an edge can concate-
nate two “sub-arrays.” Additionally, since our best-
case run-time is Θ(n) which is when the given array is
already sorted, our algorithm performs extremely well
in partially sorted arrays, similar to InsertionSort.
A complete analysis of the run-time in terms of in-
versions is not present in this paper and is saved for
another time.

Lastly, some procedures presented in this paper can
provide a better representation for some linear struc-
tures like linked-lists. We need not necessarily sort the
input, rather we can provide those intermediate forests
if they are sufficient for a user. This is useful in an on-
going insertion situation where more elements are being
inserted and keeping the structure somewhat sorted is
important. Then at the end we may complete the algo-
rithm and sort the array. Note that the trueness of the
forest will be approximately the same for every insert
since fairly quickly we can choose where to insert the

18

element.

12 Similar Algorithm Ideas

We will now discuss some ideas that may improve the
algorithms discussed in this paper, and what parame-
ters we can tweak to achieve vastly different results and
uncover new problems.

First we can modify the reach values for our cor-
responding graphs. In GraphSort we define a fixed
reach of one, but there may be different implementa-
tions of algorithms with different reach values. The
higher our reach, the more complex our corresponding
graph is, and the harder it is to parse and process the
graph as graphs are combinatorial structures.

Additionally, we can implement a k-way merge pro-
cess instead of our 2-way merge. It doesn’t seem to bet-
ter asymptotic run-time in some preliminary analysis,
but in terms of computation we may achieve more effi-
cient algorithms because the logarithm base would be
larger. However, again implementing merges for multi-
ple components turns into a very massive problem very
quickly.

Moreover, we can expand on the idea of Graph-
MergeSort and instead of generating components by
pairs of consecutive elements, we can generate compo-
nents by triples of consecutive elements, or even higher
k-tuples of consecutive elements. In this way, we first
solve each of the components in a specific way and then
continue with our merge process. This is a way to
implement Divide-and-Conquer with the correspond-
ing graph itself.

There are many conventions we have set for our al-
gorithms, and we have absolute freedom to experiment
with different conventions to realize newer algorithms
employing comparison graphs.

13 Conclusion

In summary, this paper explored properties of compar-
ison graphs, corresponding graphs, topological sorts,
and DFS to fuse together procedures and algorithms
that solve the old-age sorting problem. Our best al-
gorithm ran in time Θ(n log n) in the worst-case and
Θ(n) in the best-case. Hence, it is on par with main-
stream sorting algorithms although the graphical strat-
egy seems more complex. Further, it serves extremely
well for particular distributions of arrays, and even for
less efficient distributions it’s competitive with other
such algorithms.

To remind you again, sorting an array is simply an

application of the techniques provided here. There are
many other applications of our procedures available
with comparison graphs, in particular. Our merge pro-
cess is probably the most important and eye-opening
part of this paper as it gives us a way to generate com-
parison graphs that are more true. It retains all the
properties and conditions of its original graph and gen-
erates a new one that is more detailed and concrete,
and this procedure can be applied for solving many
other problems.

This is the direct outcome of employing graphs since
they provide another layer of complexity and informa-
tion. The algorithms presented took advantage of these
properties of graphs to develop an interesting method
to sort although it may even render to other problems.

Hopefully, the algorithms, procedures, and theorems
discussed may inspire you, the reader, to embark on
a discovery of more applications and algorithms using
the ideas discussed in this paper as a foundation.

Acknowledgements

I would like to thank Professor Patrick Tantalo of the
Computer Science and Engineering department at the
University of California, Santa Cruz. His lectures and
discussions inspired me to look into this method and
write this paper.

I would also like to thank Professor Seshadhri Co-
mandur of the Computer Science and Engineering de-
partment at the University of California, Santa Cruz.
He mentored me throughout the latter stages of the
paper to refine and polish it. Without his help I would
not be able to finish this paper.

Lastly the teaching of Nathan Marianovsky of the
Mathematics department at the University of Califor-
nia, Santa Cruz, in graph theory gave me the perfect
arsenal to formulate many of these ideas formally.

References

[1] Gary Chartrand and Ping Zhang. A First Course
in Graph Theory. Dover Publications, 2012.

[2] Thomas H. Cormen et al. Introduction to Algo-
rithms. 3rd ed. Mit Press, 2009.

[3] Nathan Marianovsky. Graph Theory Lecture
Notes. Canvas Class Files for UCSC Math 115.
Online; accessed March 2020. Mar. 2020.

[4] Patrick Tantalo. Graph Algorithms Handout.
https : / / classes . soe . ucsc . edu / cse101 /

Fall19/Handouts/GraphAlgorithms.pdf. On-
line; accessed December 2020. Nov. 2019.

19

[5] Patrick Tantalo. Graph Theory Handout. https:
/ / classes . soe . ucsc . edu / cse101 / Fall19 /

Handouts / GraphTheory . pdf. Online; accessed
December 2020. Nov. 2019.

20

