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Abstract

Evolution of Helium Star - White Dwarf Binaries Leading up to Thermonuclear

Supernovae

by

Tin Long Sunny Wong

Thermonuclear supernovae are believed to be explosions of carbon-oxygen white dwarfs

(CO WDs), but how these CO WDs reach explosion conditions remains debated. In this

project we study the helium donor channel which involves a CO WD growing in mass

through accretion from a nondegenerate helium star and exploding when it approaches

the critical Chandrasekhar mass. Using the stellar evolution code MESA, we calculate the

mass transfer episode from a 1.1 - 2.0 M� helium star to a 0.90 - 1.05 M� CO WD for

initial orbital periods in the range 0.05 - 1 day, and determine which binary parameters

would lead to a thermonuclear supernova. Our time-dependent calculations that resolve

the stellar structures of both binary components allow accurate distinction between the

eventual formation of a thermonuclear supernova (via central ignition of carbon burning)

and that of an ONe WD (in the case of off-center ignition). Furthermore, we investigate the

effect of a slow WD wind which implies a specific angular momentum loss from the binary

that is larger than typically assumed. We find that additional angular momentum loss

does not significantly alter the region of parameter space over which systems evolve toward

thermonuclear supernovae. Our determination of the correspondence between initial binary

parameters and the final outcome informs population synthesis studies of the contribution

of the helium donor channel to thermonuclear supernovae.
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1

Introduction

Type Ia supernovae (SNe Ia) are among the brightest and most energetic objects

in the Universe, with a peak luminosity of ≈ 1043 erg s−1. “Normal” SN Ia events share

similar intrinsic luminosities, and since flux goes as the inverse square of distance, SNe

Ia are good “standardizable candles” for probing distances to galaxies. This property of

SNe Ia has played a crucial role in the discovery of the accelerating Universe (Riess et al.,

1998; Perlmutter et al., 1999). Despite the important role played by SNe Ia, there is still

debate about the origins of SNe Ia. They are now believed to originate from thermonuclear

explosions of white dwarfs (WDs; e.g., Hoyle & Fowler, 1960), but how the WDs reach

the explosion conditions is still controversial (for recent reviews, see e.g., Maoz et al., 2014;

Livio & Mazzali, 2018). This project aims to understand which binary systems, i.e. progen-

itors, may contribute to thermonuclear supernovae (TN SNe) through the “helium donor

scenario”.

The helium donor scenario involves a carbon-oxygen WD (CO WD)1 and a non-

1A white dwarf is a compact star (a WD of ∼ 1M� has a radius similar to the Earth’s) where hydrostatic
equilibrium is supported by electron-degeneracy pressure; a CO WD is mainly composed of carbon and
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degenerate helium star (He star)2. The He star expands to fill its gravitational potential

well and transfers mass to the CO WD. Helium is then burned on the surface of the WD

and is converted into carbon and oxygen, thus allowing the WD to grow in mass. When

the CO WD approaches the critical Chandrasekhar mass (MCh ≈ 1.4 M�), its central

density is sufficiently high to ignite carbon and trigger a runaway reaction giving rise to a

thermonuclear supernova.

The helium donor channel has attracted theoretical attention as a feasible channel

to produce thermonuclear supernovae for two reasons. First, previous works (e.g., Iben

& Tutukov, 1994; Yoon & Langer, 2003) have found that the helium donor channel can

allow the WD to more efficiently grow to MCh (in comparison with a scenario in which the

WD grows by accreting hydrogen-rich material from a donor star). Initial He star donor

masses of MHe ≈ 1 − 2 M� can lead to mass transfer rates of ∼ 10−6 to 10−5 M� yr−1,

which allows helium to be accreted onto the WD in a thermally stable manner3. Second,

the helium donor channel may explain thermonuclear supernovae produced shortly (∼ 108

yr) after star formation (called short “delay time”; Ruiter et al., 2009; Wang et al., 2009b;

Claeys et al., 2014), as He star - CO WD binaries are necessarily young.

Observationally, several lines of evidence suggest that the helium donor channel

may indeed produce a subset of thermonuclear supernovae, particularly the subclass denoted

as Type Iax supernovae (SNe Iax; e.g., Jha, 2017). Like SNe Ia, SNe Iax have observed

signatures consistent with a thermonuclear white dwarf explosion origin, but SNe Iax have

oxygen which are the products of previous nucleosynthesic process within the progenitor star.
2A helium star is formed after a star has been stripped of its hydrogen envelope. The now bare core is

composed of mostly helium which is the byproduct of the earlier hydrogen burning stage.
3Thermally stable means that the temperature and consequently the nuclear reaction rates are regulated

through a negative feedback cycle (See Section 2.4 for a description of this process). The “non-explosive”
nature of thermally stable accretion avoids the ejection of some accreted material and hence a lower mass
transfer efficiency.
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lower ejecta velocities and lower peak luminosities (e.g., Jha, 2017). SNe Iax preferentially

occur in “younger” or “late-type” galaxies (galaxies with more recent star formation; Foley

et al., 2013; Takaro et al., 2019), which is consistent with the predictions of the helium

donor channel. In addition, helium is found in the spectra of two SNe Iax 2004cs and 2007J

(Foley et al., 2013), suggesting that ≈ 25% of SNe Iax have detectable He in their spectra

(Jacobson-Galan et al., 2018). There is also pre-explosion observational evidence favoring

the existence of the helium donor channel. McCully et al. (2014) have suggested that the

blue point source found in the pre-explosion image of the SN Iax 2012Z is consistent with a

non-degenerate He star of ≈ 2 M�, which is inferred to be the companion to the exploding

WD.

Given the promise of the helium donor channel, this project aims to investigate

the combinations of initial orbital period and He star and WD masses (i.e., the parameter

space) that can produce likely TN SN candidates from the helium donor channel. We will

refer to this part of parameter space as the “TN SN region”. Determination of the TN

SN region is required in producing TN SN rate predictions from the helium donor channel.

Observable properties of the binary models, like the luminosities and effective temperatures

of the stars, can also be compared to observed TN SNe and constrain the contribution of the

helium donor channel to overall TN SNe. To identify the TN SN region, we evolve binary

models distributed over the possible parameter space and classify their final outcomes.

We add to the contribution by previous works in two meaningful ways. Our study

accounts for the possibility of an off-center carbon ignition in the WD. For sufficiently high

accretion rates, an off-center carbon ignition is initiated in the WD before it can reach

MCh and ignite carbon in its center (Brooks et al., 2016). Instead of a TN SN, this leads
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to formation of an oxygen-neon (ONe) WD; the ONe WD may subsequently undergo an

accretion-induced collapse (AIC) and form a neutron star upon reaching MCh (Brooks et al.,

2017). This off-center ignition is missed by Wang et al. (2009b) who adopted a point-mass

model for the WD, since point-mass models only consider whether the total mass of the WD

can reach MCh and do not focus on the precise thermal structure. Although Wang et al.

(2017) have reviewed their previous parameter space calculations in Wang et al. (2009b),

they simply adopt a single criterion – the critical mass transfer rate near MCh that would

lead to an off-center carbon ignition – in determining which of their previous models are

off-center ignitions. Our study self-consistently accounts for the occurrence of off-center

ignitions, by adopting time-dependent calculations with the stellar evolution code MESA

that resolve the full stellar structures of both binary components. This allows us to refine

the TN SN region found by Wang et al. (2017).

We furthermore investigate the effect of additional angular momentum loss on the

mass transfer and subsequently the final outcome of the WD. Previous calculations have

usually assumed that any material lost from the binary system takes the form of a fast wind

launched from the WD (i.e., that the wind velocity is significantly above the orbital velocity

and so the material carries the specific orbital angular momentum of the WD). However, the

fast wind assumption may not always prevail – a slow wind may gravitationally torque the

binary and extract additional angular momentum from the orbit, affecting the subsequent

mass transfer (Brooks et al., 2016). Our study parametrizes the wind angular momentum

loss and investigates how the TN SN region changes as a function of wind angular momentum

loss.

This paper is organized as follows. In Section 2, we overview the physics of stellar
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evolution and binary systems. In Section 3, we provide a detailed description of the helium

donor scenario and review our basic modeling assumptions. In Section 4, we describe the

selected stellar and binary evolution parameters in MESA, the stopping conditions for our

binary setup, and the choices of the initial binary parameters. In Section 5, we show the

results of grids of binary models—distributed over initial He star mass, WD mass, and

binary orbital period—adopting the assumption of a fast wind. We compare with previous

works in Section 6. We investigate the effect of enhanced angular momentum loss in Section

7. In Section 8 we place constraints on our binary models by examining the energy and

momentum budgets of the optically-thick wind we invoke. In Section 9, we discuss the

uncertainties in our work, and outline the observational constraints derived from our models.

Our conclusions are presented in Section 10.
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2

Physics Background

2.1 Stellar Evolution

Stars are gravitationally bound objects. They spend their lives fighting against

gravity, supported by the pressure of their hot interiors, which are able to remain hot even

as energy is lost from their surfaces, thanks to the continual energy release through nuclear

fusion of hydrogen in their cores. As stars age, their structures evolve. Here we briefly

describe the evolution of single stars, which will help us understand the central theme of

this thesis – how binary stars interact with each other. We refer the reader to Kippenhahn

et al. (2012) for a detailed introduction to stellar evolution.

Stars are born from massive clouds of cold gas. Under some external perturbation,

for example supernovae nearby, overdensities within the cloud start to collapse under its own

gravity. As the core is compressed, its central temperature rises. When the temperature

reaches ≈ 107 K, hydrogen fusion begins. At this point the star is known as a “zero-age

main sequence” (ZAMS) star, after which the star, as a “main-sequence” (MS) star, spends
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a long period of time (∼ 1010 yr for the Sun) undergoing core hydrogen burning.

Eventually, the core runs out of hydrogen to burn. The core is now composed of

helium, the product of hydrogen burning, and hydrogen burning proceeds in a thin shell

around the core. With no energy source, the core begins to contract under gravity, which

releases gravitational potential energy and heats up the hydrogen shell. As a result, the

luminosity from hydrogen shell-burning increases; the extra energy allows work to be done

on the envelope and inflates the envelope to a large radius. Since the envelope surface is

cool (Teff ≈ 3000 K corresponding to a red blackbody) but very luminous, the star is now

known as a “red giant” (RG). The transition between the MS and RG phases is known as

the “Hertzsprung-gap” (HG) or “subgiant” phase and is ephemeral on stellar evolutionary

timescales, lasting ∼ 105 yr for the Sun.

For stars with mass & 0.45 M�, the helium core will keep growing due to addition

of fresh helium from shell hydrogen-burning, and contracting until the core temperature

reaches ∼ 108 K at which helium ignites. Among these, in stars with mass . 2.5 M�, ideal

gas pressure is insufficient to support the core that the core becomes electron-degenerate;

helium is thus ignited in a thermal runaway (see Section 2.4) known as a “helium flash”.

Now, at helium core-burning stage, the core expands, which lowers the temperature and

subsequently the luminosity at the hydrogen-burning shell, and thus the envelope shrinks.

Helium is burned stably at the core for a relatively long time (∼ 108 yr for the Sun), until

helium is exhausted and a carbon-oxygen core is formed. The star expands to become an

“asymptotic giant branch” star, in a fashion analogous to the red giant phase, except now

the core is surrounded, starting inwards, by a helium-burning shell, a hydrogen-burning shell

and a hydrogen envelope. The early phase of the AGB is known as the “early asymptotic
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giant branch” (EAGB). Towards the end of the AGB phase, helium and hydrogen shell-

burning switch on and off alternately, and the star pulses as a “thermally-pulsing asymptotic

giant branch” star (TPAGB). As a result of intensive stellar wind mass loss and thermal

pulses, the hydrogen envelope is eventually ejected, leaving behind a hot remnant core is

known as a “white dwarf”.

If we consider a star made of pure helium (and some trace heavier elements), we

can define a “helium main-sequence” (HeMS) star which burns helium in its core. The

evolution of HeMS stars is analogous to that of the aforementioned helium core-burning

stars, except HeMS stars lack a hydrogen envelope. When the HeMS star finishes core

helium-burning, it undergoes shell helium-burning and expands to a “helium subgiant” and

subsequently a “helium giant”, in a manner analogous to its hydrogen counterparts. The

expansion of the He star during the helium subgiant phase is of particular interest to us, as

it is the primary driver for mass transfer in our He star-WD binaries.

2.2 White Dwarf

Single stars with mass . 8 − 10 M� end their lives as white dwarfs. White

dwarfs are electron-degenerate objects, where electrons are squeezed so tightly together

that quantum effects dominate. In particular, the Pauli Exclusion Principle dictates that

no more than two fermions can occupy the same quantum state. In very simple words,

electrons refuse to be squeezed to the same state and from this the electron-degeneracy

pressure is generated. White dwarfs exist because ideal gas pressure is unable to stop

the collapse by gravity and the star contracts to the point where the electron degeneracy

pressure is able to fight gravity.
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For a zero-temperature white dwarf, we can obtain a relation between the radius R,

mass M , and central density ρc in the following way. Stars obey the equation of hydrostatic

equilibrium, where gravity by the enclosed mass m(r) is balanced by a pressure gradient,

dP

dr
= −Gm(r)ρ(r)

r2
,

dm

dr
= 4πr2ρ(r) .

For a degenerate Fermi gas with zero temperature, we may express pressure P as

an integral over all possible values of momentum p which in this case runs from p = 0 to

the Fermi momentum pF. The Fermi momentum is dependent on the gas density, pF =

( 3h3ρ
8πµemp

)1/3, where µe is the free electron molecular weight. Thus P ≡ P (ρ):

P =
8π

3meh3

∫ pF(ρ)

0

p4

√
1 + (p/mec)2

dp .

In the non-relativistic limit, p� mec
2, and P ∝ ρ5/3:

P =

(
3

π

)2/3 h2

20me

(
ρ

µemp

)5/3

whereas in the relativistic limit, p� mec
2, and P ∝ ρ4/3:

P =

(
3

π

)1/3 hc

8

(
ρ

µemp

)4/3

.

By the chain rule, we find an equation that expresses density as a function of

radius:

dρ

dr
= −Gm(r)ρ(r)

r2
/

(
dP (ρ)

dρ

)
.

We can treat this as an initial value problem with two coupled equations (one

for dρ/dr and one for dm/dr). At the center, we state a central density ρc, and we know

dP/dr|c = dρ/dr|c = 0 since there is no pressure gradient to fight gravity at the center.
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Figure 2.1: Mass-radius relation for zero-temperature white dwarfs. For each value of
central density ρc, a unique set of MWD and RWD can be found. As MWD increases, ρc

increases and RWD decreases, and the trend accelerates near the critical Chandrasekhar
mass MCh ≈ 1.4 M�, at which a carbon-oxygen white dwarf can ignite carbon at its center.
Here we assume that the mean electron molecular weight is µe = 2, for which the limiting
mass is 1.456 M� as shown in the dashed grey line.

Then we may integrate until ρ reaches 0, at which we obtain a radius R and a total mass M .

The result is given in Figure 2.1. Figure 2.1 shows that white dwarfs obey a mass-radius

relation, where radius decreases with mass. For each set of M and R, a central density ρc

is found. As M nears a critical mass M ≈ 1.4 M�, which is known as the Chandrasekhar

mass MCh, ρc rapidly increases and R decreases. MCh is often associated with Type Ia

supernovae, in part because the rapid increase of ρc near MCh can lead to central ignition

of carbon, at ρ ∼ 1010 g cm−3.

2.3 Mass Transfer

Where do the exploding white dwarfs come from? is the question this thesis aims to

answer. In the single degenerate channel, which includes the helium donor channel explored

here, the broad answer is “through mass transfer from a nondegenerate companion star that

causes them to approach the Chandrasekhar mass”. Here we describe briefly the physics
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that happens during mass transfer.

Consider two stars that orbit around each other. In the corotation frame, any

particle is influenced by the gravitational forces of both stars, the centrifugal force and the

Coriolis force. The Roche potential expresses the equivalent potential due to the first 3

forces:

ΦR = −GM1

r1
− GM2

r2
+

1

2
Ω2r2,

where r1 and r2 are the distances of the point being considered from stars 1 and 2, r is

the distance of the point from the origin (the center-of-mass), and Ω is the orbital angular

frequency. In Panel (a) of Figure 2.2, we contour the non-dimensionalized Roche potential

(scaled by a2Ω2 where a is the binary separation), and label the 5 local extrema known as

the Lagrange points. For each star, there is a volume around it within which any particle is

predominantly under the influence of its gravity. Panel (b) plots the non-dimensionalized

Roche potential along the line y = 0, along which lies 3 Lagrange points.

In this project, mass transfer starts when the helium star finishes core helium-

burning and expands into a helium subgiant. The He star fills its Roche lobe, and we call

this Roche-lobe overflow (RLOF). The inner Lagrange point L1 has the lowest potential

among all Lagrangian points, and so gas is “pushed” from the He star towards the WD

through L1, and mass transfer proceeds. The mass transfer rate depends on two factors.

First, it depends on how much the donor’s atmosphere is “overfilling” its Roche lobe; a

higher overfilling factor leads to a higher mass transfer rate. Second, the mass transfer rate

depends on the cross-section of the inner Lagrange point; a larger cross-section allows for a

larger mass transfer rate.
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Figure 2.2: (a) Contour of the non-dimensionalized Roche potential. Here star 1 is more
massive than star 2, with mass ratio q = M1/M2 = 1.5 which is similar to that of the He
star-WD binaries in this work. As a result, its Roche lobe, the volume within which the
gravity of star 1 dominates, is larger than that of star 2. The local extrema, the Lagrange
points, are also labeled. (b) The non-dimensionalized Roche potential along y = 0. The
Lagrange points L2, L1 and L3 lie along this line with increasing x. Among these, L1 has
the lowest potential, so if star 1 overfills its Roche lobe gas is pushed through L1 to star 2.
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2.3.1 Orbital Evolution

Mass transfer rearranges mass within the binary and affects subsequent orbital

evolution. Here we assume that the donor is star 1 and the accretor star 2, with mass

ratio q = M1/M2. Star 1 donates mass at a rate Ṁ1, where we assume a fraction β is

lost from star 2 and subsequently the system (non-conservative mass transfer). This is of

particular interest to us because, as we will see in Section 3, in the helium donor channel

some of the transferred mass is lost from the WD. The mass loss carries some specific angular

momentum, and we are interested in the effect of varying the specific angular momentum on

the orbital evolution. We thus parametrize the angular momentum loss by γṀ/M = J̇/J .

If we assume that the system (wind) mass loss Ṁ is fast compared to the orbital velocity

(vw � aΩ, i.e. the “fast wind” case), then the wind carries the specific orbital angular

momentum of star 2, γ = q.

We start by writing out the system orbital angular momentum

J = µa2Ω =
M1M2

M
a2

(
GM

a3

)1/2

= M1M2

(
Ga

M

)1/2

.

Taking the logarithmic derivative, we obtain

J̇

J
=
Ṁ1

M1
+
Ṁ2

M2
+

1

2

ȧ

a
− 1

2

Ṁ

M

ȧ

a
= 2

(
J̇

J
+

1

2

Ṁ

M
− Ṁ1

M1
− Ṁ2

M2

)
.

Under the assumption that the angular momentum change due to mass loss from

system, γṀ/M , dominates the orbital angular momentum change,

ȧ

a
= 2

[(
γ +

1

2

)
Ṁ

M
− Ṁ1

M1
− Ṁ2

M2

]
.
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Writing M = M1 +M2 = M1

(
1 + 1

q

)
, Ṁ = βṀ1, and Ṁ2 = −(1− β)Ṁ1,

ȧ

a
= 2



(
γ +

1

2

)
βṀ1

M1

(
1 + 1

q

) − Ṁ1

M1
− −(1− β)Ṁ1

M1/q




= 2

(
Ṁ1

M1

)[(
γ +

1

2

)
q

1 + q
β − 1 + q(1− β)

]

= 2

(
−Ṁ1

M1

)[
β

(
q

1 + q

)(
q − γ +

1

2

)
+ 1− q

]
.

We examine the effect of mass transfer on the binary separation by looking at the

fast wind case, i.e., γ = q. Then,

ȧ

a
= 2

(
−Ṁ1

M1

)[
β

2

(
q

1 + q

)
+ 1− q

]
.

We have written the equation in such a way that (−Ṁ1/M1) > 0, so that for

conservative mass transfer (β = 0), we see that the orbit always widens (ȧ/a > 0) for q > 1

(as in our case), and shrinks (ȧ/a < 0) for q < 1. Through the positive term multiplied by

β, non-conservative mass transfer tends to widen the orbit.

Since the term due to γ is negative, we also see that a higher wind specific angular

momentum (γ > q) tends to shrink the orbit. For purposes of illustration, we consider

nearly equal mass binaries, i.e. q ≈ 1:

ȧ

a
= β

(
−Ṁ1

M1

)(
3

2
− γ
)

so that a γ greater than ∼ 1.5 has the effect of widening the orbit.

2.3.2 Mass Transfer Stability and Common Envelope

As we have seen, mass transfer has an effect on the binary separation. By exten-

sion, mass transfer also affects the Roche radii of both stars. In addition, the donor may



15

adjust its radius in response to mass being transferred from its envelope. These two radii

compete with each other: if the donor radius shrinks relative to the Roche radius, i.e. the

overfilling factor decreases, then the mass transfer rate decreases, and vice versa. It may

also happen that mass transfer is happening so rapidly that the donor cannot adjust to

the mass loss and its radius keeps expanding relative to the Roche radius. Then the mass

transfer proceeds in a runaway, and the cores of both stars become enshrouded in a “com-

mon envelope”. Whether this happens depends on the binary orbit as well as the stellar

structure of the donor; in general a convective envelope expands, and a radiative envelope

contracts, in response to mass loss (Soberman et al., 1997).

Dynamical friction between the stellar cores and the common envelope drags the

binary and shrinks the orbit. If the binary is to survive without merging, the common

envelope must be ejected by some energy source. Often it is assumed that the change in

orbital energy, ∆Eorb is expended, with efficiency α, in unbinding the common envelope,

which has binding energy GMMenv/λR, where M and R are the mass and radius of the

donor and λ depends on the structure of the donor (known as the α formalism; Webbink,

1984). The γ formalism is based conservation of angular momentum instead (Nelemans

et al., 2000), assuming that the specific angular momentum lost, ∆J/∆M , where ∆J =

Ji − Jf , the change in binary angular momentum, is proportional to the initial binary

specific angular momentum, Ji/(M + m), where M and m are the masses of the donor

and the companion respectively. This distinction between the α and the γ formalisms will

be important when we consider the formation probability of our He star- CO WD binaries

(Section 9.3).
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2.4 Thermal Stability

Thermal stability plays a major role in the accretion of matter onto a WD. In

the case of a thermal instability, a nuclear runaway may occur and cause blow off some

matter off the WD. For a detailed derivation for the criteria for thermal stability, we refer

the reader to Kippenhahn et al. (2012). Here we summarize some of the main points.

We consider a general equation of state, which is a relation between pressure and

density, of the form ρ ∝ P aT−δ, such that

dρ

ρ
= α

dP

P
− δ dT

T
.

We start out with the first law of thermodynamics dq = du − Pdv, where dq is

heat added per unit mass, du is the change in specific internal energy, and v = 1/ρ is the

specific volume. After some manipulation of thermodynamic identities, we find

dq = du− Pdv = cpdT −
δ

ρ
dP .

Now we want some prescription of relating dP to dT . We consider the density and

pressure near the center for now, but we will later consider a burning shell. The local density

is close to the mean density of a sphere, ρ ∼ m/(4πr3/3), and so dρ/ρ = −3dr/r. As for

pressure, we start with the equation of hydrostatic equilibrium, dP/dm = −Gm(r)/(4πr4).

We compare the surface where m(r = R) = M and P (r = R) = 0 with some m(r), and

obtain to an order of magnitude,

dP

dm
∼ 0− P
M −m ∼ −

GM

4πR4
,

P ∼ GM(M −m)

4πR4
.
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If we assume a homologous expansion, i.e. the radial expansion dr of each mass shell is

proportional to their radii r, then dR/R = dr/r, and we obtain

dP

P
= −4

dr

r
.

Combining dρ/ρ = −3dr/r and dP/P = −4dr/r, we get dρ/ρ = (3/4)dP/P .

Substituting this into the equation of state,

dP

P
=

δ

α− 3/4

dT

T
.

Thus, we find that

dq =

[
cp −

δ2

α− 3/4

P

ρT

]
dT .

This has the form dq = c∗dT , where c∗ is called the gravothermal specific heat.

For an ideal gas, α = δ = 1, cp = (5/2)(R/µ) and P/(ρT ) = R/µ, so c∗ = −(3/2)(R/µ).

This means an ideal gas has a negative heat capacity – it cools when heat is added to it.

Since nuclear reactions are sharply sensitive to temperature, any increase in nuclear reaction

rates leads to a decrease in temperature, which in turn quenches the nuclear burning. In

contrast, for an electron degenerate gas, δ � 1 and so c∗ > 0, so that a degenerate gas heats

up when heat is added, which in turn increases nuclear reaction rates and drives a thermal

runaway. The runaway may continue until the temperature of the gas rises enough to lift

the degeneracy. This difference between an ideal gas and a degenerate gas arises because

the pressure of an ideal gas can respond to temperature and remove the added heat via

doing Pdv work. The point to remember is that a more degenerate gas is subject to greater

thermal instability.



18

Other than the equation of state, another factor that may affect the thermal

stability of a gas is its geometry. Consider a burning shell with inner boundary radius r0

and outer boundary radius r = r0 +D where the thickness D � r0. The mass of the shell

is roughly m ∼ ρr2
0D. Consider the expansion of the shell with the mass contained m and

inner boundary r0 fixed. Then dr = dD, and dρ/ρ = −dD/D = −(r/D)(dr/r). Therefore

in the expression of c∗ for shell-burning we simply have to modify 3/4 into (r/D)/4:

c∗ = cp −
δ2

α− r/4D
P

ρT

Now, if we choose a thickness D small enough, c∗ will be positive. That means

a sufficiently thin shell can heat up due to the addition of heat – the Pdv work by a thin

shell is insufficient to remove the added heat – and experience a thermal instability; . This

is known as the thin-shell instability.

Finally, the addition of heat is affected by several factors. For a shell we can write,

per unit mass,

dq

dt
= εnuc − εν −

∂L

∂m

where dq/dt is rate of heat added per unit mass, εnuc is nuclear reaction rate per unit mass,

εν is neutrino cooling rate per unit mass, and ∂L/∂m is the energy flow out of the shell

which may occur via radiation, convection or conduction. If, for example, neutrino losses

dominate and carry away energy from nuclear reactions, then thermal stability may be

maintained.

Thus, when considering the thermal stability of a star, we need to take into account

the equation of state (a higher degree of degeneracy reduces thermal stability), geometry

(a geometrically thin shell is thermally unstable), and heat balances (means of cooling can
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stabilize a gas).

We now relate the thermal stability considerations derived above to the accretion

of matter onto a WD. Matter is accreted at a rate ṀWD onto the WD and is burned at

the same rate in a thin shell on the surface of the WD, leading to a nuclear luminosity

Lnuc = εnucṀWD. Additional energy is released from the gravitational potential energy of

the accreted material as it settles onto the WD core radius which is roughly the radius of a

cold WD, leading to an “accretion luminosity” Lacc ≈ GMWDṀWD/RcWD. In a steady state

the temperature of the burning shell is dependent on the mass accretion rate through the

energy release. For lower accretion rates, matter in the shell is colder and more degenerate,

and the shell itself is thinner. This configuration is subject to thermal instability, where the

resulting thermal runaway produces a bright transient known as a “nova”. For a sufficiently

high ṀWD, the accreted matter is nondegenerate and burned in a thicker shell compared to

the case of low ṀWD, resulting in stable accretion. We refer the reader to Shen & Bildsten

(2007); Nomoto et al. (2007); Wolf et al. (2013) for works deriving the thermal stability of

hydrogen accretion. We will return to the issue of thermal instability for helium accretion

in Section 3.2.

2.5 Formation of He star - CO WD systems

2.5.1 Formation Channels

Understanding the formation of He star - CO WD binaries informs the contribution

of the helium donor channel to TN SNe, particularly in population synthesis calculations.

This particular combination of binary components requires some combination of mass trans-

fer and common envelope episode. Here we summarize the three scenarios leading to the
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formation of a He star - CO WD binary described by Wang & Han (2012). We refer the

reader to Claeys et al. (2014) as another source.

We illustrate the formation of He star - CO WD binaries via Figure 2.3, which

is Figure 3 of Wang & Han (2012). In Wang & Han (2012), scenario A starts with a

subgiant or red giant branch (RGB) primary and a main sequence (MS) secondary (which

initially descended from ZAMS stars of different masses). The primary undergoes Roche

lobe overflow (RLOF) episodes to form a CO WD after its envelope has been stripped. The

secondary is now more evolved as a subgiant/ RGB. As the secondary becomes more evolved,

it undergoes dynamically unstable RLOF which leads to a common envelope episode. When

the common envelope is ejected, the cores of the stars emerge as a He star - CO WD binary.

In Scenario B, the CO WD - MS binary comes initially from a early asymptotic giant branch

(EAGB) primary with a MS secondary. The EAGB-MS binary undergoes a dynamically

unstable RLOF and a common envelope to form a helium red giant (He RG) - MS binary,

and forms a CO WD - MS binary after a stable RLOF. In Scenario C, the He star - CO

WD comes directly from a common envelope resulting from a dynamically unstable RLOF

between a thermally-pulsing asymptotic giant branch (TP-AGB) and a helium-core burning

star.

The various formation channels affect the likelihood of forming a He star-WD

system for a given combination of initial He star and WD masses and orbital period,

(M i
He,M

i
WD, logP id), which then informs the contribution of that particular (M i

He,M
i
WD, logP id)

to thermonuclear supernova rates. This will be important in Section 9.3.
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Figure 2.3: Formation channels of He star- CO WD binaries from Wang & Han (2012).
This diagram shows that some combination of mass transfer and common envelope episode
is required, such that the remaining stellar cores will form a He star - CO WD binary.
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2.5.2 Short Delay Times

The helium donor channel is said to have a “short delay time”, contributing

to thermonuclear supernovae shortly after star formation. This fact has to do with the

intermediate-mass (∼ 6− 8 M�) progenitors of the binary components.

First, we require a helium star that is not electron-degenerate when it ignites

helium in its core and, as will be justified in our calculations in Chapter 5, has a mass

between 1 and 2 M�. Relating to single star evolution, these conditions approximately

apply to a hydrogen shell-burning star with a nondegenerate helium core. In Figure 2.4,

we evolve models with different ZAMS mass. We plot the mass of the helium core against

the degree of degeneracy at the core εF/kT , where εF is the Fermi energy and εF/kT ≤ 10

is taken as the signature of a degenerate core. Each model increases in helium core mass

due to the addition of helium from shell hydrogen-burning, and the degree of degeneracy

increases as the helium core contracts. Γ peaks and then sharply drops as helium is ignited,

which we label by the grey dashed lines. By comparing the helium core mass at helium

ignition and requiring Γ < 10, we find that the minimum ZAMS mass is ≈ 6− 8 M�, while

the maximum ZAMS mass is ∼ 10 M�.

Second, as Chapter 5 will show, we require a CO WD with mass between 0.90 and

1.05 M�. The lower limit of MWD is the minimum value that can produce a TN SN. The

upper limit ≈ 1.05 M�, is the maximum CO WD mass that can be formed through single

star evolution; WDs more massive will likely be oxygen-neon WDs. Single star evolution

calculations show that the transition between the formation of a CO WD and that of an

ONe WD occurs at a ZAMS mass of ≈ 8− 10 M�.

The intermediate-mass (∼ 8 M�) ZAMS progenitors required to form the CO WD



23

0.5 1.0 1.5 2.0

MHe core (M�)

10−1

100

101

ε F
/
k
T

2.0 M�
4.0 M�
6.0 M�
8.0 M�

Figure 2.4: Degree of degeneracy versus helium core mass of our single star models evolved
with different ZAMS mass. The degree of degeneracy at the center is measured by εF/kT
where εF is the Fermi energy. As the MS star exhausts hydrogen in its core it forms a
helium core which contracts and becomes more massive due to build-up of helium from shell
hydrogen burning while becoming more degenerate at the center, until helium is ignited. In
the helium donor channel we require a nondegenerate helium star with mass > 1 M� which,
as our single star models may suggest, descends from a star with ZAMS mass of & 6−8 M�.

and He star can explain why the helium donor channel has a short delay time. We explain

the scaling of MS lifetime with stellar mass, first by explaining how MS luminosity scales

with stellar mass.

Luminosity is roughly energy per time, thus we can estimate the luminosity of a

MS star by dividing its radiative energy aT 4V by the timescale for photons to diffuse out

of the star τdiff , where a = 4σB/c and σB is the Stefan-Boltzmann constant. Treating the

outward diffusion of photons as a random walk, τdiff is roughly ∼(number of scatters)×(time

elapsed between each scatter) ∼ (R/l)2 × (l/c) = R2/(lc), where l = 1/neσT is the mean

free path, ne is the number density of electrons which is approximately the number density

of protons, and σT is the Thompson cross-section. Thus,

L ∼ aT 4V

τdiff
∼ (aT 4V )

c

R2neσT
=
ac

σT

T 4

R2

mpV

M
∝ T 4V 2

MR2
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For a gravitationally bound object, the average kinetic energy per particle is

roughly equal to the gravitational potential energy per particle (“Virial Theorem”). Thus,

kT ∼ GMmpµ/R where µ is the mean molecular weight. For a completely ionized gas with

solar composition, µ ≈ 0.6. Thus, the luminosity scales as

L ∝ V 2

MR2

(
GMµmp

kR

)4

∝M3µ4

which, using the Sun, gives

L ∼
( µ

0.6

)4
(
M

M�

)3

L�

Note that a more massive star has a higher luminosity. Stars with a higher molec-

ular weight also have a higher luminosity. For example, a 1 M� He MS star has µ ≈ 2, and

a luminosity of ≈ 120 L�.

The luminosity then brings us to the MS timescale τMS, where the fuel (hydrogen

for MS or helium for HeMS) is burned stably in the center. τMS is given by dividing the rest

mass energy of the star by the luminosity, multiplied by the efficiency of burning ε (efficiency

of converting rest mass into energy). Using the atomic rest masses mH = 1.0078u, mHe =

4.0026u and mC = 12.0000u, we find that for H burning, ε = (4 × 1.0078 − 4.0026)/(4 ×

1.0078) ≈ 7.09 × 10−3, and for He burning, ε = (3 × 4.0026 − 12.0000)/(3 × 4.0026) ≈

6.50× 10−4. We also assume that only 10% of the star is burned, and also convert the total

mass into fuel mass by the appropriate mass fraction of the fuel. Then,

τMS ∼
(0.1)(0.75)(7.09× 10−3)Mc2

LH
≈ 8× 109

(
0.6

µ

)4(1 M�
M

)2

yr

τHeMS ∼
(0.1)(0.98)(6.50× 10−4)Mc2

LHe
≈ 8× 106

(
2

µ

)4(1 M�
M

)2

yr

The point of this derivation is that a more massive star has a shorter lifetime,

since photons diffuse outwards at a higher rate. A pure He MS star also has a shorter
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lifetime than a hydrogen MS star, by virtue of it having a larger luminosity. Relating to

this work, the He star and WD considered here both descend from massive, ∼ 8 M� MS

stars. They spend ∼ 108 years on the hydrogen MS and another ∼ 107 years on the helium

MS. If we consider the range of ZAMS masses that each of the binary components can have

(≈ 6−10 M�), we obtain a range of τMS ranging from ≈ 80 to ≈ 220 Myr. This agrees with

the ≈ 40− 200 Myr delay time distribution of the helium donor channel in the population

synthesis calculations by Claeys et al. (2014). The short lifetime of the He star - CO WD

binary progenitors is the reason why the helium donor channel is able to give short delay

time TN SN candidates.
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3

The Helium Donor Channel

Our models of the helium donor channel begin with a detached He star - WD

binary.1 As the He star evolves, it eventually overfills its Roche lobe and starts to donate

mass onto the WD. We indicate the rate at which helium is donated to the WD by its

companion He star as |ṀHe|. The WD grows at the rate the helium is donated only when it

can burn the helium at the same rate in a thermally-stable manner. The assumptions about

what happens outside of the narrow range of rates where this is possible are important in

determining whether the WD can reach MCh and thus in determining the ultimate fate of

the binary. In this section we discuss the different regimes in which accretion can occur and

describe how our models answer the critical question of how much of the transferred He is

retained on the WD. We also discuss how an optically thick wind can be launched from the

WD.

1We describe how these binaries form in Section 2.5.
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3.1 The Red Giant Regime and Ṁup

Above the maximum stable accretion rate (hereafter the upper stability line Ṁup),

the WD cannot burn helium as fast as it is accreted. This occurs because there exists a max-

imum luminosity for a shell-burning star. The core-mass luminosity relation (Paczyński,

1970) says that the luminosity of a shell-burning star is primarily dependent on the core

mass. This can be understood in the context of hydrostatic equilibrium – in shell burning

stars, the pressure due to the envelope is negligible, and the core mass is dominant in setting

up the condition for hydrostatic equilibrium (Kippenhahn et al., 2012). Since nuclear burn-

ing depends sharply on the temperature, the luminosity, which largely derives from nuclear

burning, is then related to the core mass through hydrostatic equilibrium. For accreting

WDs, however, the luminosity derives not only from nuclear burning of the accreted mate-

rial, but also from the gravitational potential energy released when the accreted material

settles from the surface to the base of the envelope. As both the nuclear burning rate and

the “accretion luminosity” depend on the accretion rate, this gives rise to a maximum stable

accretion rate dependent on the core mass (Shen & Bildsten, 2007). The calculations by

Nomoto (1982) show that the upper stability line for helium accretion is

Ṁup = 7.2× 10−6

(
MWD

M�
− 0.60

)
M� yr−1, (3.1)

which is valid for CO WDs of mass 0.75 M� 6 MWD 6 1.38 M�. The value of Ṁup scales

positively with MWD, since the equilibrium temperature at the burning shell increases with

the core mass and allows for nuclear burning at a higher rate.

For |ṀHe| > Ṁup the WD is not able to burn material as fast it is donated, so

material piles up in the envelope, inflating it to red giant dimensions. Typically, a mass
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loss prescription that allows the WD to dispose of the excessive mass and circumvent the

formation of a common envelope is invoked (e.g., Yoon & Langer, 2003; Wang et al., 2009b,

2015). Physically, this may correspond to the suggestion by Hachisu et al. (1996) that an

optically-thick wind can result2 (called the “accretion wind”). As the WD expands, its

envelope cools and gradually becomes radiation-dominated as the iron opacity bump traps

the outgoing photons, resulting in a strong radiation-driven wind. In this scenario, the WD

accretes from its companion through an equatorial accretion disk and loses the excessive

mass from the system through a bipolar outflow (e.g., Hachisu & Kato 2001).

This picture indicates that the WD grows at an effective rate of Ṁup. Therefore in

practice, the wind is often implemented simply by removing material at a rate given by the

amount that |ṀHe| is in excess of Ṁup. Our work follows this optically-thick wind scenario,

though in implementation it mirrors the approach of Brooks et al. (2016) by removing mass

from the system when the WD model expands (see Section 4.1), rather than using a form

of Ṁup prescribed in advance.

One of the goals of this work is to critically examine many of the assumptions

made in this regime. We discuss and compare past approaches in more detail in Section 6.

We consider the specific angular momentum carried by the mass loss in Section 7. We

explore the physical plausibility of the optically-thick wind in Section 8.

3.2 The Helium Nova Regime and Ṁlow

Below the minimum stable accretion rate (hereafter the lower stability line Ṁlow),

the helium shell is thermally unstable and undergoes a series of helium flashes. This thermal

2Their calculations were applied to hydrogen accretors, but an analogy can be and has been made to
helium accretors.
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instability in the burning shell happens when a temperature perturbation causes the nuclear

burning rate to increase faster than the cooling rate either by expansion work or radiative

cooling (e.g., Nomoto et al., 2007; Shen & Bildsten, 2007). For low accretion rates, the thin

envelope leads to a less efficient cooling by expansion work and is hence thermally unstable.

The thermal content of the envelope, which determines the equation of state, may also come

into play. For an envelope with a lower thermal content, pressure has a lower dependence

on the temperature, making cooling by expansion work negligible. In general, a lower mass

accretion rate below the lower stability line leads to a stronger helium flash. Like Ṁup,

Ṁlow itself increases with MWD, since a stronger surface gravity leads to a higher shell

temperature and hence burning rate, driving the envelope mass lower and therefore less

thermally stable for a given accretion rate.

For |ṀHe| 6 Ṁlow, the existence of helium flashes can also lead to the ejection

of mass from the system. It is then necessary to understand the mass retention efficiency

(the ratio of mass that remains on the WD to the total mass transferred over a nova cycle)

to determine how the WD grows in mass. The helium flash regime is not a focus of our

work. Therefore, once the WD enters the He flash regime instead of following our models

through the flashes, we terminate the simulations and report the required average retention

efficiency for the WD to grow to MCh. These values can then be compared to previous

results characterizing the helium nova retention efficiency as a function of MWD and ṀHe

(e.g., Kato & Hachisu, 2004; Piersanti et al., 2014; Wu et al., 2017).
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3.3 Summary on Accretion Regimes

To sum up, the growth of the WD mass is determined by the following regimes: if

|ṀHe| > Ṁup, the WD effectively accretes at roughly Ṁup, and the excess is lost as a wind;

if |ṀHe| 6 Ṁlow, the WD undergoes helium flashes and the exact growth rate depends on

the mass accumulation efficiency over a nova cycle; if the mass transfer rate is in the stable

regime, the WD accretes at exactly the donor mass transfer rate |ṀHe|.

3.4 Optically Thick Wind

To remove excess mass from the white dwarf, we invoke the optically thick wind

theory. Here we describe a picture of the optically thick wind. We refer the reader to

Lamers & Cassinelli (1999) for the theory of stellar winds in general and to Kato & Hachisu

(1994) for the optically thick wind theory we invoke here.

Consider a photon diffusing outwards from the envelope of a star, which has a

specific frequency that can resonate with a line transition. As the photon gets scattered or

absorbed and re-emitted, via that line transition, it transfers momentum to the scattering

material. If enough photons can transfer momentum to the wind material, an outflow can be

driven. Now assume that the scattering material is flowing radially outwards, with velocity

increasing with radius. Due to the outflow, as the photon diffuses outwards it becomes more

red-shifted in the co-moving frame. Thus, once the photon is absorbed and re-emitted by,

and transfers momentum to the wind material, it cannot deposit its momentum again, unless

there is another line transition at a lower frequency. In line-driven winds, photons scatter

off the wind material at one line transition and later at lower-frequency line transitions,
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and the resulting momentum transfer drives a strong wind outflow.

Now, if there are line resonances clustered closely enough, a scattered, red-shifted

photon may be absorbed by the next low-frequency line resonance, which may go on re-

peatedly. Such is the situation for the optically thick wind considered here, where the

iron opacity bump, constituted of many bound-bound transitions in iron and iron-group

elements, has line transitions clustered so densely that multiple scattering may occur. The

line ensembles in the iron opacity bump are sufficiently dense that they constitute an effec-

tive opacity, coupling light strongly to matter. To get a rough idea, consider the radiative

force. The photon momentum flux is L/(4πr2c), and using the opacity κ which is a cross-

section per unit mass, we find the radiative force per unit mass frad = κL/(4πr2c). Setting

the radiative force equal to the gravitational force, per unit mass, we solve for the so-called

local Eddington luminosity:

κ(r)L(r)

4πr2c
=
Gm(r)

r2

LEdd(r) =
4πcGm(r)

κ(r)

If L(r)/LEdd(r) > 1, the radiative force overwhelms gravitational force. Local

super-Eddington conditions may drive an expansion of the star, or in some cases a strong

outflow. In our case, as the white dwarf expands at the upper stability line, the envelope

cools to the temperature where the iron bump opacity dominates, resulting in local super-

Eddington conditions and possibly a strong optically thick wind.

To illustrate this process, we evolve a model of a 1.01 M� white dwarf undergoing

helium nova. We drive a helium nova on the white dwarf and let the white dwarf expand,

in a hydrostatic model. As the white dwarf expands to ∼ 1.0R�, where the iron opacity

bump is sufficiently deep within the photosphere, we turn on the hydrodynamic capabilities
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of MESA. We relax the outermost zone to an optical depth of log τ = −4, and allow MESA to

solve the momentum equation and therefore the wind structure. For this particular model,

where log(LWD/L�) ≈ 4.6, we find that a successful wind outflow can occur (under the

assumption of negligible convective transport). In Figure 3.1, we show various properties

of the wind as a function of the radius.

In Panel 1, we plot the wind velocity, the adiabatic sound speed cs,a =
√
γkT/µmp

where γ is the adiabatic index, and isothermal sound speed cs,i =
√
kT/µmp. The sonic

point, where the velocity first exceeds the isothermal sound speed, marks the beginning of

a transonic outflow. In this model it is located at ∼ 10−0.4 R�.

In Panel 2, we plot the ratio of the local radiative luminosity L(r) and local Ed-

dington luminosity LEdd(r), and the opacity κ(r). The opacity has a bump nearby and

slightly beyond the sonic point caused by the copious iron group bound-bound transitions,

which leads to effective trapping of photons and hence local super-Eddington conditions. As

shown in Panel 3, LEdd(r) drops significantly at the iron opacity bump since it is inversely

proportional to κ; the luminosity thus becomes super-Eddington. Assuming negligible con-

vective transport, the local super-Eddington conditions lead to a strong outflow instead

of envelope inflation in this model. This is analogous to outflows from Wolf-Rayet stars,

which are suggested to be driven by the iron opacity bump (e.g., Nugis & Lamers, 2002).

In particular, it has been suggested that the opacity gradient must be positive, dκ/dr > 0,

at the sonic point in order to start a radiation-driven outflow (Nugis & Lamers, 2002). We

show that this is true in our model.

In Panel 4, we plot the dimensionless CAK optical depth parameter tCAK as a

function of radius for the MESA model (Castor et al., 1975; Lamers & Cassinelli, 1999).
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Figure 3.1: Radial profiles of a wind model without convective transport. First panel: vari-
ous velocities (wind velocity v in black, adiabatic sound speed cs,a in blue, isothermal sound
speed cs,i in orange, and escape velocity vesc in dashed grey). Second panel: ratio of local
luminosity to local Eddington luminosity (blue) and opacity (orange). Third panel: local
luminosity (blue) and local Eddington luminosity (orange). Fourth panel: the CAK optical
depth parameter. This illustrates that at the iron bump opacity (log(R/R�) ≈ −0.2), radi-
ation is strongly trapped and the locally super-Eddington luminosity accelerates the wind
to supersonic velocities. The CAK optical depth parameter shows near the acceleration
region the Doppler effect may be important.



34

Following Nugis & Lamers (2002), the dimensionless CAK optical depth parameter tCAK ,

comparing the importance of the CAK-type line force versus radiative force by continuum

absorption, is defined as

tCAK =
σref
e ρvth

dv/dr
, (3.2)

where σref
e = 0.325 cm2 g−1 is the reference value for the electron scattering opacity (Lamers

& Cassinelli, 1999), and vth is the mean thermal velocity of protons. The CAK-type line

force reflects the fact that Doppler shift caused by a non-zero wind velocity may allow

photons of different frequencies to be absorbed by an optically thick line resonance and

provide an amplification in line force. With a low CAK optical depth parameter tCAK,

the line force amplification by Doppler shift becomes important. We evaluate the velocity

gradient dv/dr via finite differencing, and show that tCAK is of order 10 near the sonic point,

and gradually decreases to order unity as the wind accelerates. There is a singularity since

the velocity structure turns over and decreases at large radius. Nevertheless, the CAK-type

line force is negligible near the sonic point, and may be important at some larger radius. In

other words, our wind structure may be valid only up to some finite radius from the sonic

point, beyond which CAK-type line forces may need to be accounted for. On the other

hand, since we have set the opacity for log T < 4.8 to be the electron scattering opacity, we

may have provided some additional radiative acceleration to some extent. On the whole,

the wind structure calculated here may be uncertain for some radius beyond the sonic point

due to our treatment of the line opacity and electron opacity.

Nevertheless, one may ask, what about convection? The short answer is that wind

models with convection on are complicated. In the MESA hydrodynamic model above, we
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turn on convection once a steady wind has been established. We do not believe that our

convective model is realistic, but we will use it to illustrate how convection might affect

wind models.

Figure 3.2 shows two convective models that differ in the mixing length parameter

αMLT, with αMLT = 0.5 in the Panel (a) model and αMLT = 1.0 in the Panel (b) model. In

the mixing length theory, blobs of material rise and fall in the convection zone as they heat

up or cool down, while transporting heat flux from the hot region to the cold region. The

mixing length parameter αMLT is the ratio between the size of the mixing region and the

local pressure scale height HP = P/ρg. In general the velocity of the convective eddies is

proportional to αMLT (Cox & Giuli, 1968).

For each panel, the top sub-panel plots various velocities as a function of radius.

The thick black line shows the wind velocity v in the convective model, and we show in

light grey for comparison the wind velocity in the radiative model corresponding to the same

simulation time. In blue is the adiabatic sound speed cs,a, orange the convective velocity

vconv and dashed grey the local escape velocity vesc.

The bottom sub-panel plots various luminosity ratios as a function of radius. The

blue line shows the ratio of local total luminosity L = Lrad + Lconv to local Eddington

luminosity LEdd. The dashed orange line shows the ratio of local radiative luminosity Lrad

to local Eddington luminosity LEdd. The green line shows the ratio of local convective

luminosity Lconv to local total luminosity L.

Both models show that a convective zone is driven around the location of the iron

bump opacity, which changes the wind structure. The top sub-panels show that a larger

αMLT leads to a larger convective velocity, where a larger vconv allows for more energy to be
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Figure 3.2: Radial profiles of wind models with convective transport. Panel (a) has αMLT =
0.5 and Panel (b) has αMLT = 1.0. Top sub-panel: various velocities (wind velocity v in
thick black, adiabatic sound speed cs,a in blue, convective velocity vconv in orange, escape
velocity vesc in dashed grey, and wind velocity for the radiative model at the same instant
in light grey). Bottom sub-panel: various luminosity ratios (L/LEdd in blue, Lrad/LEdd

in dashed orange, and Lconv/L in green). A higher αMLT drives a higher vconv and Lconv,
which lead to a lower wind velocity.
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transported by convection. While a larger fraction of the total luminosity goes into driving

the convective eddies (Lconv/L increases from ≈ 20% to 40% as αMLT goes from 0.5 to 1.0),

less radiative luminosity is available to accelerate the wind. As a result the wind velocity

decreases. In the αMLT = 1.0 model, the terminal wind velocity is barely above the escape

velocity, and for even larger values of αMLT the wind ceases to exist. This illustrates the

possibility that an inflated envelope solution instead of a wind solution may be obtained for

locally super-Eddington envelopes (e.g., Ro & Matzner, 2016; Ro, 2019)3.

In addition, the αMLT = 1.0 model illustrates the limits of the one-dimensional

mixing-length theory. The top sub-panel of Panel (b) shows that the convective velocity

vconv approaches the adiabatic sound speed cs,a near the iron bump opacity. This may

drive shocks and the assumptions of the mixing-length theory break down. In reality,

three-dimensional effects of turbulence may change the picture provided by one-dimensional

mixing-length theory (e.g., Jiang et al., 2015)4.

Despite the caveats we suggest for our wind models, our calculations illustrate how

an optically-thick wind can be triggered in a stellar model. To proceed we will assume that

convection is negligible and that an optically thick wind is driven when the WD approaches

the upper stability line Ṁup. We solve for the properties of the optically thick wind, and

find wind velocities from several hundreds of km s−1 to ≈ 1200 km s−1 for the typical range

of Ṁw, which will inform the specific orbital angular momentum that the wind may carry

(see Chapter 7). For a detailed discussion on the implications of the optically thick wind

3Inflated envelope solutions may be obtained regardless of whether convection is accounted for. We
also note that Quataert et al. (2016) find that convection may be important in initially inflating a stellar
envelope but is negligible once a steady wind is established. However we simply use our models to illustrate
the possibility that convection may cause less radiative luminosity to be available for wind-driving.

4We note that Jiang et al. (2015) performed three-dimension radiation hydrodynamic simulations and
suggested that the mixing length theory with αMLT ≈ 0.5 is an accurate description when convection is
efficient, whereas the mixing length theory poorly describes their model when convection is inefficient.
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properties we refer the reader to Section 7 of Wong & Schwab (2019).
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4

Modeling and Methodology

In this section we describe the stellar and binary evolution controls, as well as

the initial models in our calculations. Since the parameter space involves numerous binary

systems, we stop the binary runs when the outcome of the binary system is clear. We

describe the stopping conditions here.

4.1 Stellar and binary evolution with MESA

We evolve a CO WD and a He star of various masses in a binary using version

10108 of Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al. 2011, 2013,

2015, 2018). We use MESA to evolve the stellar structures of both stars as well as the binary

parameters self-consistently, until the outcome of the mass transfer episode from the He

star is clear. We describe the important controls in the binary module as follows.

We start the evolution with a He ZAMS star between 1.1 M� and 2.0 M� and a CO

WD of 0.90− 1.05 M�. Prior to the He star leaving the He ZAMS, the binary orbit decays

slightly solely through emission of gravitational waves. We do not consider the effects of
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magnetic braking.

As the He star finishes core helium burning, it expands and fills up its Roche lobe.

Mass transfer onto the WD then ensues. For the mass loss from the He star, we adopt the

Ritter mass loss scheme (Ritter, 1988), which accounts for the finite pressure scale height

of the donor near its Roche limit. We solve for the mass loss using the implicit scheme in

MESA, which accepts the computed mass loss at the start of a time step, ṀRLOF, only if the

computed mass loss at the end of the time step, Ṁend, has a relative change less than some

threshold ξ: ∣∣∣∣∣
Ṁend − ṀRLOF

Ṁend

∣∣∣∣∣ 6 ξ, (4.1)

and we take ξ = 1× 10−4.

For |ṀHe| > Ṁup, some mass is lost from the vicinity of the WD and carries off

some angular momentum from the system. We must compute the system mass loss rate,

βṀHe, where β is the fraction of the mass transfer rate ṀHe lost from the system. To do so,

we use a prescription that takes advantage of the tendency of the WD expand to red giant

dimensions. The value of β is 0 when the WD radius (RWD) is within 2 RcWD, two times

the radius of a cold WD of the same mass, but β gradually increases to 1 when RWD reaches

10 RcWD. Generally, we want these transition radii to be somewhere between the cold WD

radius and the Roche lobe radius. As noted by Brooks et al. (2016), the expansion of the

WD at the upper stability line occurs so sharply as ṀWD increases that it does not matter

which radius one chooses to implement the wind mass loss.1 This procedure effectively

holds the growth rate of the WD, ṀWD = (1− β)ṀHe, at Ṁup.

1We choose a fixed physical radius, while Brooks et al. (2016) choose a fraction of the Roche radius.
Because we explore longer period systems, we found it numerically advantageous to not allow the WD to
develop a large envelope during the calculation.
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For the determination of the exact value of β, we adopt an implicit scheme similar

to the one described above. In other words, we require that the fractional change in the

computed system mass loss between the start and end of the time step to vary less than

ξ = 1 × 10−4 . This is important because near the upper stability limit, the WD expands

so rapidly that the time step size may have an effect on the computed value of β in an

explicit scheme. The implicit scheme we adopt allows us to self-consistently calculate β and

is described in more detail Appendix A.

The characterization of Ṁup by rapid increase of RWD, is indeed consistent with

the statement that above the upper stability line the WD expands to red giant dimensions.

However, whether the wind mass loss occurs at the onset of expansion, or whether efficient

wind mass loss can happen at all, is itself another issue. For example, Yoon & Langer

(2003) have adopted a wind mass loss that scales not only with RWD, but with the WD

luminosity LWD too, and the upper stability line defined as such is different from ours.

We adopt the optically-thick wind theory as a plausible physical scenario for mass loss at

mass transfer rates above the upper stability line. We stress that the particular values of

WD radii to implement the mass loss in our prescription do not carry physical significance.

Our assumption that a wind will carry all the excess mass above Ṁup, defined by rapid

expansion of the WD, is convenient for calculations. We will discuss the physical possibility

of such a wind via wind calculations and energetic arguments in Sections 8 and 9.2.

Our MESA models also include a super-Eddington wind scheme for the WD. This

only active when the WD exceeds the Eddington luminosity while undergoing helium flashes

(generally at the onset of accretion), and so does not affect the upper stability line. We

discuss its effect in Section 5, but it is of minor importance since the focus of this study is
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on the phase of thermally-stable mass transfer.

The important controls for the stellar models during the binary evolution are

described below.2 For the He star, we use the “predictive mixing” scheme of MESA which

iteratively finds the location of the convective boundary (described more in detail in Section

6.1). This change is important during the HeMS when a convective core exists. Equally

important in modelling the convective core is the use of OPAL Type 2 opacities (Igle-

sias & Rogers, 1996), which accounts for enhanced carbon and oxygen abundances due to

He burning. We also artificially enhance the efficiency of convection in near-Eddington,

radiation-dominated regions by reducing the excess of the temperature gradient over the

adiabatic temperature gradient, in order to avoid numerical difficulties associated with the

iron opacity bump in the most stripped He star models (discussed more in Appendix B).

The corresponding controls are

predictive mix(2) = .true.

predictive zone type(2) = ‘burn He’

predictive zone loc(2) = ‘core’

predictive superad thresh(2) = 0.01

predictive avoid reversal(2) = ‘he4’

okay to reduce gradT excess = .true.

gradT excess lambda1 = -1

gradT excess max logT = 6

use Type2 opacities = .true.

2The complete list of controls is available to the reader as our MESA input files are posted online at
mesastar.org.
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Zbase = 0.02

For the WD, we also use Type 2 opacities. We note that for sufficient spatial

resolution of the burning shell, we adopt mesh delta coeff = 0.4 which yields & 3000

zones during the accretion (∼ 400 zones are around the He-burning shell).

4.2 Stopping Conditions

To save computation time, we evolve our models until one of the following condi-

tions is met:

1. Center Ignition. When MWD approaches MCh, compression of the core

to higher densities may lead to center carbon ignition. A thermonuclear runaway then

happens. We detect the runaway by comparing the rate of non-nuclear neutrino cooling, εν

and the rate of carbon burning, εcc. When εν 6 εcc, we assume that thermal equilibrium

can no longer be maintained by having neutrino cooling carry the energy produced by

carbon burning, and that a runaway reaction occurs. The result is likely to be a TN SN.

The observational manifestation of Chandrasekhar-mass core carbon ignitions has not been

definitively theoretically established, in part due to uncertainties related to the existence

of the detonation-to-deflagration transition during the explosion. Thus these core ignitions

might be either normal SNe Ia (in the case of delayed detonations, e.g., Gamezo et al.,

2005; Bravo & Garćıa-Senz, 2008; Seitenzahl et al., 2013) or SNe Iax (in the case of pure

deflagrations, e.g., Kromer et al., 2013; Long et al., 2014).

2. Off-center Ignition. If the WD accretes at high accretion rates (near Ṁup)

for a prolonged period, compressional heating in the shell (i.e., the region of the off-center

temperature peak that develops) may proceed faster than in the core. As a result, the
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WD shell may reach conditions for an off-center carbon ignition. A slow carbon flame

propagates to the center and the likely outcome is a ONe3 WD which undergoes accretion-

induced collapse into a neutron star (Nomoto & Iben, 1985). We detect off-center ignition

using the same conditions as in center ignition, but we can distinguish the two either by

examining whether MWD is significantly sub-Chandrasekhar, or by examining the mass

coordinate of maximum carbon burning.

3. Center/Off-center Ignition. In very few cases, we find that both the core

and the shell reach the line where εcc = εν . That is, we find models very close to the

boundary in parameter space between a center ignition and an off-center ignition. While

the occurrence or the final product of a hybrid center/off-center ignition is not clear, we

label these systems to emphasize that they are lying near the boundary between a center

ignition and an off-center ignition given the uncertainties.

4. Helium Flashes. When |ṀHe| 6 Ṁlow, the helium accreted onto the WD

is thermally unstable and leads to helium flashes. We then terminate the binary run since

evolving through a full helium flash cycle is computationally expensive. We report the

minimum required retention efficiency for the WD to grow to MCh, given the remaining He

star envelope mass (Mf
He,env) and WD mass (Mf

WD) at termination:

min. efficiency =
MCh −Mf

WD

Mf
He,env

.

5. Detached Double WD Binary. It may happen that the He donor exhausts

its envelope and underfills its Roche lobe again. In this case we would expect that a detached

double WD binary would result(Ruiter et al., 2013; Liu et al., 2018). If both the WDs are

CO WDs, they may merge following orbital decay by gravitational waves and contribute

3However, see Wu et al. (2019) who suggest in a closely-related circumstance that this may lead to
burning beyond ONe.
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to the double-degenerate channel of SNe Ia (e.g., Iben & Tutukov, 1984; Webbink, 1984;

Guillochon et al., 2010; Dan et al., 2011).

6. Mass Transfer Runaway. Depending on the prescription of angular mo-

mentum lost from the system, and the binary mass ratio, a mass transfer runaway may

occur – further mass and angular momentum loss may lead to even greater loss. In reality

we would expect such a system to form a common envelope, or the WD may merge with

the core of the He star.

4.3 Initial Binary Parameters

We compute grids of models by varying the initial He star mass (M i
He), WD mass

(M i
WD), binary period (logP id), and degree of wind angular momentum loss from the system.

Our fiducial parameter grid is with a 1.0 M� CO WD, where we compute models evenly

distributed in donor mass (for M i
He from 1.0 M� to 2.0 M�) and in logarithmic initial period

(for logP id from −1.3 to 0.0 in days). The shortest period corresponds to the limit where

the He star donor fills up its Roche lobe at He ZAMS. The other parameter space limits

are determined such that the TN SN region is well enclosed.

In addition to the grid with initial WD mass of 1.0 M�, we also compute grids with

initial WD masses of 0.90 M�, 0.95 M� and 1.05 M�. As M i
WD decreases, the parameter

space shrinks as the WD needs to accrete much more mass to reach MCh. A WD mass

of 0.90 M� is roughly the lowest WD mass where a TN SN outcome is still likely. For

M i
WD > 1.05 M�, the WD is likely a hybrid carbon-oxygen-neon (CONe) or an ONe WD

(e.g., Siess 2007). It is uncertain whether such WDs can contribute to TN SNe. An ONe

WD growing up to MCh is likely to undergo accretion-induced collapse and form a neutron
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star. Therefore, we do not consider M i
WD above 1.05 M�.

The initial models are made to approximate the previous common envelope episode(s)

these He star - CO WD binaries have undergone. For the He star, we create He ZAMS

stars with MESA. The He stars have solar metallicity, that is, Y=0.98 and Z=0.02. We scale

up the mass fraction of 14N to the equilibrium value of the CNO cycle, since the He star

has previously undergone hydrogen burning. The CO WD models are created by stripping

the envelope of a He star. We evolve a He star and a WD in a binary just as in our grid

setup, since we know that for long periods and large donor mass, the He star eventually

depletes its envelope and forms a degenerate CO core. We then use part of the MESA test

suite make co wd to strip more mass off the CO core through a stellar wind. The CO core

is allowed to cool for 10 Myr. Although this is not exactly the evolutionary channel the

CO WD comes from, the stripping of a He star in any case suffices to model the formation

of the CO WD. We test various combinations of periods and donor masses through this

method to produce the CO WD models of masses 0.90 M�, 0.95 M� and 1.0 M� to be used

in the grid models. However, since this method produces a hybrid CONe WD for a mass

of 1.05 M� – which reinforces the fact that 1.05 M� is the boundary between CO WD and

ONe WD – we artificially scale up the 1.0 M� model to create our 1.05 M� CO WD.

It may be of concern whether the initial conditions in the WD may affect the

final outcome. While the carbon/oxygen ratio at the core may affect the temperature and

density at which carbon ignites near MCh, the initial core temperature has little effect on

carbon ignition in our case. The high WD accretion rates of ∼ 10−6 M� yr−1 allows fast

convergence of the core density-temperature trajectory to a common attractor with little

dependence on initial conditions, as shown by Brooks et al. (2016).
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Figure 4.1: Schematic result of a set of binary evolution models. By identifying the outcome
of each of our grid of models, we divide the initial parameter space into the set of outcomes
described in Section 4.2. The bold region delineates the “Thermonuclear Supernovae” region
where the WD is likely to grow up to MCh. The lower boundary of the TN SN region is
dashed to indicate that our models do not directly find the boundary between the He flash
systems that produce TN SNe and those that eventually become detached double CO WD
binaries.

Finally, we adopt the fast wind assumption in the fiducial grids to be presented

in Section 5. As in previous work (e.g., Yoon & Langer, 2003; Wang et al., 2009b), this

assumes that the WD wind carries the specific angular momentum of the WD itself:

J̇w

Ṁw

=

(
q

1 + q

)2

a2Ωorb, (4.2)

where J̇w and Ṁw are the orbital angular momentum and mass loss rates from the system,

q = MHe/MWD is the mass ratio, a is the semimajor axis, and Ωorb is the orbital angular

frequency.

Figure 4.1 illustrates the schematic result of one of these sets of model grids.4 Our

calculations partition the parameter space into various outcomes described in Section 4.2,

with our particular interest being in the TN SN region. Beyond the left boundary of the

4The boundaries approximately, but not exactly, correspond to the results from the case for MWD =
1.0 M� shown in Figure 5.3c.
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TN SN region, the He star is Roche lobe-filling at He ZAMS, and these systems labelled

“RLOF” in Figure 4.1 and marked with an X are unlikely to have been formed.
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5

Fast Wind Results

In this section we describe the results of our binary calculations. Throughout, we

keep the wind angular momentum loss fixed at the fast wind limit. We first choose a few

cases to illustrate the binary calculation itself, then we describe the TN SN region.

5.1 The Mass Transfer History

To demonstrate the mass transfer history leading up to the corresponding final out-

come of the binary, we show a subset of the binary calculations in Figure 5.1. Panel (a) shows

a set at fixed period and varying He star mass, (M i
He,M

i
WD, logP id) = (1.1 – 2.0, 1.0, -0.9),

while panel (b) shows as set at varying period but fixed donor mass, (M i
He,M

i
WD, logP id) =

(1.6, 1.0, -1.2 – -0.3).

Mass transfer initiates as a consequence of both orbital decay by gravitational

waves and evolutionary expansion of the He star. As the He star, evolved from the He

ZAMS, exhausts helium in the core and proceeds to helium shell burning, it rapidly expands

and overfills its Roche lobe. Mass transfer then proceeds on the thermal timescale of the
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He star, yielding a typical mass transfer rate of ∼ 10−6− 10−5 M� yr−1. The WD accretes

from the He star and grows in mass.

Initially, as |ṀHe| is still low and the WD is cold, matter accreted onto the WD

is cold and dense, leading to a few cycles of helium flashes, which explain the very high

|ṀWD| – the WD is in fact losing mass due to the super-Eddington wind we trigger. The

strength of the helium flash decreases with each cycle as the thermal content of the WD

surface increases and |ṀHe| increases further. Afterwards, |ṀHe| (colored, dashed lines)

enters the stable regime or even rises above Ṁup. In this case, |ṀWD| (colored, solid lines)

is effectively limited to Ṁup, and we assume the remainder of the donated mass is lost in a

fast wind carrying the specific angular momentum of the WD.

The final outcome of each system is indicated by the symbol at the end of its track.

The outcome shifts as the mass transfer history changes. We clear see that increasing M i
He

and logP id generally leads to higher values of |ṀHe|, but that the trends in the outcome are

more complex.

Panel (a) of Figure 5.1 shows that with increasing M i
He, off-center carbon ignition

in the WD is more favored. This results from the fact that a more massive donor is able to

sustain high |ṀHe| for a longer period of time. In general, for a more massive donor, either

ṀWD = Ṁup for a longer time, or ṀWD = |ṀHe| tends to be higher within the steady

accretion regime. Either of these leads to higher accretion rate onto the WD, favoring off-

center carbon ignition in high mass donors. This is certainly the case for the most massive

donors (1.8 - 2.0 M�). For less massive donors (1.5 - 1.7 M�), |ṀHe| eventually falls

within the stable regime, but the generally high accretion rates throughout the accretion

episode still leads to an off-center carbon ignition. The WD mass at which the off-center
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carbon ignition happens is higher for a lower M i
He, because the lower |ṀHe| leads to less

compressional heating, delaying the evolution of the shell to carbon ignition.

Conversely, low M i
He mean lower mass transfer rate on average. The WD may

accrete for a while – or even not at all – at Ṁup, and the drop in |ṀHe| leads to accretion in

the stable regime and eventually in the helium flash regime. The lower M i
He is, the higher

the helium flash retention efficiency is required to reach MCh. This is because the WD

does not grow too much further in mass during the stable accretion. However, the mass

retention efficiency depends on |ṀHe|, and may even be negative for very low |ṀHe|. Recall

that we stopped our evolutionary calculations at the onset of the He flashes, so the retention

efficiencies must come from other calculations that follow WDs though many flashes.

Panel (b) of Figure 5.1 shows that an off-center ignition is more favored with

increasing logP id. For a given M i
He, longer periods give rise to a larger donor Roche radius

and a larger |ṀHe| can occur when the donor overfills its Roche lobe. This means |ṀHe| is

higher initially. The higher compressional heating caused by high |ṀHe| is why the outcome

shifts from a core ignition at logP id = −1.2,−1.1 to an off-center ignition at logP id from

−1.0 to −0.5. (we describe this in more detail in the next subsection.) Ultimately for even

larger logP id, the formation of a detached double WD binary is favored. Longer periods

lead to higher initial |ṀHe|, so the donor envelope is stripped more efficiently; as the WD

can only accrete at most at Ṁup, the very low accretion efficiency by the WD may cause

the donor to exhaust its envelope before the WD can grow up to MCh. Then a detached

double WD binary is formed, as in the two longest period systems.



52

1.0 1.1 1.2 1.3 1.4

WD Mass (M�)

10−6

10−5
M

as
s

T
ra

n
sf

er
R

at
e

(M
�

y
r−

1
)

Mi
He
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Figure 5.1: The mass transfer history for models at fixed period (Panel a; logP id = −0.9)
and fixed donor mass (Panel b; M i

He = 1.6) adopting the fast wind limit. The dashed lines
show the mass loss rate of the He star, ṀHe, and the solid lines show the accretion rate on
the WD, ṀWD. As mass transfer begins |ṀHe| increases due to evolutionary expansion of
the He star and peaks, while later |ṀHe| decreases as the donor structure adjusts to the
mass loss and expansion of the binary. We assume an optically-thick wind is driven when
|ṀHe| > Ṁup (upper dashed black line), which then holds ṀWD ≈ Ṁup. The symbols at
the end of each track indicate the stopping condition of each run, with the red square and
blue triangle indicating core and off-center carbon ignition, respectively. For systems where
|ṀHe| 6 Ṁlow (lower dashed black line), we have either a detached double WD binary (black
circle) or if the WD begins to undergo helium flashes, we halt the calculation and denote
this by a red filled circle. The Ṁup and Ṁlow curves are from Brooks et al. (2016).
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Figure 5.2: Thermal evolution of the WD during accretion. Panel (a) shows the model
(M i

He,M
i
WD, logP id) = (1.6, 1.0,−1.1) which eventually undergoes central carbon ignition;

Panel (b) shows the model (M i
He,M

i
WD, logP id) = (2.0, 1.0,−0.9) which eventually under-

goes off-center carbon ignition. These panels plot the WD density-temperature profile at
different WD masses. The red (Panel a) and orange (Panel b) lines track the evolution of
the core (right) and the shell (left), one of which will eventually cross the black dashed line
where the rate of carbon burning is equal to the thermal neutrino losses. Panel (c) shows
the evolution of the mass transfer rates with MWD. Note that the WD in Panel (b) has a
higher accretion rate at all times (solid line), and hence ignites off-center due to stronger
compressional heating in the shell than in the core.
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5.2 Core/Shell Competition

Brooks et al. (2016) have brought to attention the core/shell competition in the

WD, in which the mass accretion history determines whether a carbon ignition occurs at

the center or off-center. Here we describe the physics behind the thermal evolution in the

core and the shell.

The mass accretion rate on the WD, ṀWD, determines the energy generation

rate and subsequent heat distribution within the WD. Energy is generated in the burning

shell via stable helium burning and by the release of gravitational potential energy as each

Lagrangian shell is buried deeper inside the WD and compressed while the WD increases

in mass. The local (Lagrangian) compression rate leading to the release of gravitational

energy originates from two sources (see equation (6) of Nomoto 1982). One arises due to

the increase in density at a fixed fractional mass coordinate q while the WD increases in

mass; the other arises from the compression to higher densities of the shell itself as it moves

inwards to lower q (Nomoto, 1982). A temperature peak is driven at high accretion rates

because this “compressional heating” proceeds faster near the surface than at the center for

high accretion rates – the timescale for compressional heating is faster than the timescale for

heat transport (Nomoto, 1982). Therefore, for higher accretion rates the WD shell evolves

more rapidly to higher temperature and density (Brooks et al., 2016). An off-center carbon

ignition is thus more likely.

In Figure 5.2, we show the evolution of the WD density-temperature profile, for

two cases of accretion. Both panels (a) and (b) start with a 1.0 M� WD accreting from

a He star companion in an initial orbital period (in days) of logP id = −1.1. Panel (a) has

a 1.6 M� He star, whereas Panel (b) has a 2.0 M� He star. We show the corresponding
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mass transfer rates in Panel (c). Since in Panel (a) the donor has a lower envelope mass, as

mass transfer proceeds |ṀHe| falls into the stable regime, whereas the Panel (b) WD always

accretes at Ṁup. Due to the higher mass accretion rate, the Panel (b) WD experiences

stronger compressional heating in the shell than in the core. As the shell evolves to higher

temperature and densities, carbon is eventually ignited off-center. On the contrary, the

Panel (a) WD is able to grow up to MCh and undergo central carbon ignition. Figure 5.2

illustrates the point that a higher mass accretion rate favors an off-center carbon ignition,

so properly resolving the WD stellar structure is needed in order to investigate the TN

SN region. Our fiducial grid, to be described in the following section, showcases our time-

dependent binary runs resolving both components.

5.3 The Fiducial Grid

As the fiducial grid, we run models evenly distributed in M i
He and logP id space,

using M i
WD = 1.0 M� and a fast wind assumption. The corresponding mass transfer history

for each model is similar to the ones shown in Figure 5.1. Here we describe the general

trends in the outcome across the parameter space. Figure 4.1 shows a schematic version the

outcomes, while Figure 5.3, panel (c) shows the detailed outcome for each binary calculation

in the fiducal grid.

The left-most boundary of the TN SN region is determined by the condition that

the He star not be Roche-filling at He ZAMS. The shortest period that the He star can

still fit in its Roche lobe is logP id = −1.3, except for models with MHe = 1.8 − 2.0 M�.

The rest of this period may be so tight that the He star, while still helium-burning at

the core (case BA mass transfer), may expand due to evolution, transfer mass in the He
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flash regime, adjust and be detached repeatedly. The super-Eddington wind present in our

models effectively keeps the accumulation efficiency near zero during the He flashes and so

the WD experiences little growth in mass during this phase. Some particular models may

experience He flashes that cause numerical problems in MESA which is why some models are

missing from the grid. The models that run through eventually transfer mass at the stable

regime as the He star exhausts its core helium (case BB mass transfer), although their mass

at the start of the stable mass transfer may be reduced from its mass at He ZAMS.

The upper and right boundaries of the TN SN region comes from the occurrence

of off-center carbon ignitions in the WD, or formation of detached double WD binaries.

As mentioned, higher M i
He and logP id lead to higher accretion rates and favor off-center

ignitions. These will likely lead to a mass-transferring He star with an ONe WD companion

which may undergo accretion-induced collapse near MCh (Brooks et al., 2017). Even longer

logP id strip the He donor so efficiently that the donor becomes detached again. With longer

periods more time has elapsed between He star - WD binary formation and donor RLOF,

therefore the donor is more evolved at the start of RLOF. As a result the CO core of

the He donor grows more, so that the donor may become a more massive WD when it

becomes detached again. The less massive remnants may become a second CO WD. The

subsequent orbital decay through gravitational waves may lead to a double CO WD merger

and hence to TN SN through the double-degenerate channel. The more massive remnants

may become an ONe WD and the final outcome of such a CO + ONe WD merger may also

be an interesting transient event (Kashyap et al., 2018).

For lower M i
He systems, |ṀHe| eventually enters the He flash regime. Following

evolution through the helium flashes is tractable only by time-dependent, multi-cycle cal-
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culations, so in Figure 5.3 we use the colorbar to report the required retention efficiency

for systems that begin to flash. Referring to the low-mass 1.1-1.2 M� donors in Panel (a)

of Figure 5.1 and Panel (c) of Figure 5.3, we see that the required efficiency is near unity,

but the fact that they have low |ṀHe| means that the helium flashes will have very low

retention efficiency. These low mass donors are unlikely candidates as systems that will

grow the WD up to MCh, and hence define the lower boundary of the TN SN – systems

below this boundary will ultimately become double CO WD binaries (Liu et al., 2018).

We do not determine the minimum M i
He that can still contribute to TN SNe since we do

not evolve the WD through the He flashes; in Figure 4.1 we draw the lower boundary at

systems with 60% required efficiency since it broadly agrees with the lower boundaries of

Wang et al. (2009b) and Wu et al. (2017). Previous works have attempted to calculate the

mass retention efficiency of helium flashes as a function of MWD and ṀWD (e.g., Kato &

Hachisu, 2004; Piersanti et al., 2014; Wu et al., 2017), which we have briefly discussed in

Section 3.2.

In between the boundaries for off-center carbon ignition, detached double WD

binary, and low rentention efficiency helium flash, is the region of central ignition (likely TN

SN progenitors). These are systems with |ṀHe| low enough to avoid strong compressional

heating in the shell and thus an off-center carbon ignition, or exhausting the donor envelope,

but high enough to avoid helium flashes with low retention efficiency. Near the short period

end, there is a trend for the center/off-center ignition boundary to move to higher M i
He.

This is because compared with long periods, high mass donors at short periods become

Roche-filling at a less evolved stage with lower core mass, and in general avoid very high

|ṀHe| so as to cause an off-center ignition in the WD.
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5.4 A Different Donor Mass

The fiducial grid employs a 1.0 M� WD as the accretor, but it is also interesting

to see how the parameter space changes with M i
WD. Figure 5.3 shows the results of several

grids run with a different M i
WD.

In general, the parameter space shrinks with lower initial WD mass. The most

significant change is at the long period end, where the regime for forming detached double

WD binaries starts at a shorter period (a shift of ≈ 0.3 in logP id) for the 0.95 M� grid

(panel b) compared with the 1.0 M� grid (panel c). The long period binaries tend to have

higher |ṀHe| initially, which the WD cannot accept fully due to the upper stability limit,

and hence lower overall accretion efficiency. As the donor is stripped of its envelope rapidly,

the question then becomes whether the WD can grow up to MCh before the donor envelope

is exhausted. This is simply more difficult for lower M i
WD.

On the short period end of the 0.95 M� grid, we see a slight shift of the core-

ignition regime into the parameter space with high mass donors. This may be attributed

to the lower value of Ṁup for lower MWD, such that the WD growth rate is lower during

the time before |ṀHe| falls below Ṁup and the WD enters the stable accretion regime. The

lower accretion rate leads to weaker compressional heating in the shell and allows the WD

to avoid an off-center ignition. Therefore, a lower M i
WD shifts the boundary between center

and off-center ignitions to a higher M i
He in the parameter space, and vice versa.

To summarize, the parameter space for TN SNe is restricted to lower donor masses

due to off-center ignition for a higher initial WD mass, but broadens to include longer period

systems by outracing the stripping of the donor envelope.
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Figure 5.3: The fate of the He star - CO WD binary as a function of M i
He and logP id, with

each panel representing a different initial WD mass (0.90,0.95,1.00,1.05 M� from Panels a
to c). As a guide to interpreting these plots, the reader is referred to Figure 4.1, which is
a schematic version of panel (c). The colored squares represent the system where the WD
undergoes helium flashes, we color code by the required retention efficiency for the WD to
grow to MCh. Several dark-red systems represent systems where the WD undergoes a core
ignition through direct accretion. The dark-red squares with a blue edge and black stripes
represent systems where both core and shell ignitions are detected, representing systems
located at the core/shell ignition boundary in the parameter space. The light grey squares
with a blue edge and black stripes represent systems where the WD experiences a shell
ignition and will likely form an ONe WD. The black squares indicate systems likely to form
a detached double WD binary; systems with high required retention efficiencies are also
likely to produce detached double WDs. Our work does not determine the actual retention
efficiency during the He flashes, so does not directly indentify the mininum He star donor
mass required for a TN SN through this channel. The white squares indicate systems where
the He star is Roche-filling at He ZAMS. The TN SN region grows to longer logP id but
lower M i

He as M i
WD increases.
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6

Comparison with Previous Works

Now having described the results of our fast wind grids in Section 5, we discuss

and compare with the results of previous works.

6.1 Comparison with Brooks et al. (2016)

The most direct comparison we can make is with Brooks et al. (2016) who also used

MESA and who provided a starting poing for our work. A major difference between the two

studies is our use of MESA’s predictive mixing capability. Paxton et al. (2018) emphasized

the importance of self-consistently locating convective boundaries such that ∇rad and ∇ad

are equal on the convective side of the boundary. They implemented a scheme, called

“predictive mixing”, that served to satisfy this constraint. This has a significant effect on

the extent of the convective core during core He burning (see their section 2.4). This leads

to differences in the stellar structure of the donor and hence mass transfer rates.

We illustrate that the use of the predictive mixing scheme for the He donor leads

to a slightly different binary evolution in Figure 6.1. The self-consistent determination of
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the convective boundary leads to a larger convective core. This has several effects. First,

it produces a larger carbon core after core helium exhaustion and thus the helium envelope

mass available for mass transfer to the WD is smaller. Second, because the core burning

lifetime is longer and we begin at the He ZAMS, the binary separation by the time mass

transfer happens is slightly smaller, as gravitational waves have had more time carry away

orbital angular momentum. Finally, as the donor has a slightly different structure, mass

transfer and subsequently the binary evolution takes a slightly different path.

There are also slight differences in our wind mass loss prescriptions. We both

implement a wind mass loss when the accreting WD is at the upper stability line, but

whereas Brooks et al. (2016) limit RWD to less than 60% of the WD Roche radius RRL,

we limit RWD to a slightly more compact configuration, 10 RcWD. Our implementation

leads to a slightly lower Ṁup, since the transition to a He red giant does not happen at

a infinitely sharp mass accretion rate, and our prescription chooses the lower end of this

transition. Figure 6.2 compares two runs at (M i
He,M

i
WD, logP id) = (1.6, 1.0,−1.1), with

one limiting the radius to 10 RcWD, and the other to 80% RRL. This illustrates that our

choice of limiting radius in the wind prescription does not lead to significant differences in

the wind mass loss and mass transfer rate.

At an initial orbital period of 3 hr, Brooks et al. (2016) find the transition between

core and shell ignitions is around MHe ≈ 1.7 M�. In our calculations, this transition is

somewhat lower, around MHe ≈ 1.5 M�. Figure 6.1 illustrates that, in terms of final WD

mass, models run with predictive mixing appear like models withMHe lower by≈ 0.1 M� run

without predictive mixing. This partially explains the shift. Based on their posted inlists,

we believe that Brooks et al. (2016) also included magnetic braking, which means that the
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Figure 6.1: Comparison of two runs with a 1.0 M� WD at an initial orbital period 0.125 days
with M i

He ranging from 1.5 to 1.8 M�, one iteratively solving for the convective boundary of
the donor (shown as solid lines) and the other without this “predictive mixing” capability
(shown as dashed lines). The runs with “predictive mixing” have higher |ṀHe| initially, as
a result of the different donor convective core size on the HeMS.

orbits shrank slightly before mass transfer began, making their initial period effectively

shorter than 3 hr. This also goes in the correct direction to explain the change, as shrinking

the period by 0.1 dex increases the transition mass by ≈ 0.1 M�. For the case of lower

mass donors, comparing the MHe = 1.3 M� and 1.4 M� models in Panel (a) of Figure 5.1

with the equivalent models in Figure 3 of Brooks et al. (2016), we see that the models start

experiencing strong helium flashes at similar WD masses, MWD ≈ 1.27 M� and 1.35 M�,

respectively. The |ṀHe| at which the strong helium flashes start is slightly higher in our

models, which may be due to differences in the accretion histories and in the adopted

opacities. Together, these minor differences appear to account for most of the difference

between our results and Brooks et al. (2016). We emphasize that overall the agreement is

good, which is to be expected given the similarity of our approaches.
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Figure 6.2: Comparison of two runs at (M i
He,M

i
WD, logP id) = (1.6, 1.0,−1.1), one using a

larger radius of 80% RRL for initiating the wind mass loss (orange) and the other a smaller
radius of 10 RcWD (blue). The difference in the effective upper stability line is small and
both WD models reach MCh.

6.2 Comparison with Yoon & Langer (2003)

Yoon & Langer (2003) computed the mass transfer between a 1.6 M� zero age

main sequence He star and a 1.0 M� WD initially at an orbital period of 0.124 days.

Gravitational wave losses are included in the initial orbital decay. The WD is treated as

a point mass until |ṀHe| is above 10−6 M� yr−1, at which point a “heated” WD model is

used to approximate the heating by the initial helium flashes. The WD is eventually able

to grow up to MCh and experience a central ignition.

The most similar model in our grid has the same binary component masses with

logP id = −0.9. Instead of a core carbon ignition found by Yoon & Langer (2003), we find

an off-center carbon ignition at about MWD ≈ 1.32 M�. We examine the differences by

running a MESA model with logP id = −0.9 adopting the mass loss prescription of Yoon &

Langer (2003). We show the results of comparing this with our standard model in Figure

6.3. The Yoon-like model experiences an off-center ignition at ≈ 1.34 M�, similar to our
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Figure 6.3: A comparison of our work and a binary run adopting the Yoon & Langer (2003)
prescription. Both are run at (M i

He,M
i
WD, logP id) = (1.6, 1.0,−0.9). Our mass accretion

rates are similar, except that due to a dependence on LWD/LEdd, the Yoon & Langer (2003)
prescription gives rise to some wind mass loss when the WD is massive. The difference in
mass transfer history does not affect the outcome and both models shown experience an
off-center ignition before reaching MCh.

standard model.

The mass transfer histories of both models are very similar. As expected, the donor

mass transfer rates are almost identical, with a slightly different accretion retention fraction

due to the wind mass loss prescriptions adopted. In particular, Yoon & Langer (2003) have

adopted a wind mass loss with the form Ṁw = 10−2RWDLWD/GMWD(1−Γ). This form is

based on dimensional arguments (modifying the gravitational potential to account for the

radiation pressure), and normalized to fit the mass loss rates observed for Wolf-Rayet stars.

On the other hand, we implement a mass loss algorithm that limits the WD radius to a

rather compact 10 RcWD.

The dependence of the mass loss prescriptions on different stellar parameters is the

main cause in the slight difference between the two models shown in Figure 6.3. Whereas we

implement a mass loss only when the WD experiences radial expansion, the Yoon & Langer
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(2003) prescription also has mass loss even when the WD is quite compact but instead has a

high luminosity close to the Eddington limit due to the accretion. This can be clearly seen

when the WD is quite massive. In general, the Yoon & Langer (2003) prescription leads to

slightly lower accretion rates, which would slightly favor a core ignition. As can be seen in

Figure 6.3, the difference in WD accretion rates between our prescription and the Yoon &

Langer (2003) prescription is not significant as both these models experienced an off-center

ignition. Thus, instead of a difference in mass loss prescription, the reason why we find an

off-center ignition where Yoon & Langer (2003) find a core ignition may be due to different

donor models, e.g., the use of MESA’s predictive mixing capability in our work. Moreover,

the (M i
He,M

i
WD, logP id) = (1.6, 1.0,−0.9) case is located at the boundary between center

and off-center ignitions in the parameter space, therefore the final outcome is sensitive to

the binary evolution prescription.

6.3 Comparison with Wang et al. (2017)

Wang et al. (2009b, 2017) also study the parameter space for SN Ia via the helium

donor channel. They use Eggleton’s stellar evolution code to evolve He star - WD binaries.

They model the WD as a point mass, but have developed a simple prescription to account

for the occurrence of an off-center carbon ignition in the WD. Here we compare our results

to theirs.

Several details differ in the mass transfer histories of the models computed by

Wang et al. (2009b) and those in our work. Such differences are reasonable in light of the

different WD core thermal profiles, He donor stellar models, exact values of the accretion

regime, etc., being used in our works. In particular, Wang et al. (2009b) have used the upper
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stability line of Nomoto (1982), which is slightly higher than the effective upper stability

line in our calculations.

More importantly, it is informative to compare the TN SN regions found in our

works. In order to find the off-center ignition models in the entire parameter space, Wang

et al. (2017) examine the mass transfer histories of the models in Wang et al. (2009b). If the

models have mass transfer rates higher than a single critical value Ṁcr when the WD is near

MCh, that particular model is determined to experience an off-center ignition. The value

of Ṁcr is determined by computing a grid of models, where WDs of M i
WD = 0.6− 1.35 M�

accrete at different constant rates. The accretion rate above which WD models experience

an off-center ignition (which will happen before the WD reaches MCh) is then the critical

mass transfer rate Ṁcr. In the work of Wang et al. (2017), the value of Ṁcr is 2.05× 10−6

M� yr−1. Of course, time-dependent mass transfer simulations will show that the WD does

not accrete at a constant rate, so the occurrence of an off-center ignition depends on the

mass accretion history. As a result, our grid presents a non-negligible, further correction

to the upper boundary of the TN SN region, due to accounting for the time-variability of

the mass transfer rate. Comparing our fiducial grid (Panel (c) of Figure 5.3) with Figure 7

of Wang et al. (2017), we find that the upper boundary of our grid for M i
WD = 1.0 M� is

generally lower than that of Wang et al. (2017) by M i
He ≈ 0.1− 0.2 M�.

To demonstrate the importance of time-dependent calculations, in Figure 6.4 we

compare two simulations of the system (M i
He,M

i
WD, logP id) = (1.5, 1.0,−0.9), which is an

off-center ignition system in our work but a central ignition system in Wang et al. (2017).

One system is taken from our prescription fully resolving the WD. The other takes the WD

as a point-mass but with the upper stability line given by Nomoto (1982). In both cases,
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we can observe that the WD accretes at Ṁup for some time, until |ṀHe| falls back into the

stable accretion regime. If the occurrence of the off-center carbon ignition is not tracked,

when the WD nears MCh the mass transfer rate may eventually fall below the Ṁcr found

by Wang et al. (2017). As a result, the lower M i
He off-center ignition systems that we have

found will be missed by the Ṁcr-prescription since |ṀHe| eventually falls below Ṁcr. We

note that the Ṁup of our prescription is lower than that of Nomoto (1982), up to the 10%

level. If we were to adopt the Nomoto (1982) Ṁup, our upper boundary of the TN SN

region would have been even lower.

However, a second cause may be responsible for the difference in the TN SN region

upper boundaries. A point-mass calculation shows that, for a M i
He slightly higher than in

Figure 6.4, say M i
He = 1.6 M�, the Ṁcr-prescription would also have agreed that the WD

will ignite off-center. The only other reason why our grid does not agree with Wang et al.

(2017) on this model, lies in differences in stellar models.

Moreover, this difference in the upper boundaries found by us and by Wang et al.

(2017) varies in degree depending on M i
WD. Comparing our grid of M i

WD = 0.90 M� with

Figure 8 of Wang et al. (2017), we find very similar upper boundaries because the off-center

ignitions are not important. Instead, the low value of M i
WD requires further depletion in the

donor envelope to grow up to MCh. The WD accretes below Ṁup for a longer time, so the

compressional heating in the WD shell is less important. The conditions for an off-center

ignition are therefore unfavorable.

We may compare the other boundaries as well. The left boundary is determined by

the condition that the He donor is not Roche-filling at the He ZAMS. Comparing our fiducial

grid of M i
WD = 1.0 M� with that of Wang et al. (2017), we find that our left boundary is
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slightly larger by . 0.1 in logP id. This discrepancy is likely to stem from differences in our

stellar evolution codes. But whether this is negligible depends on the formation probability

distribution of the CO WD-He star binaries – a higher common envelope ejection efficiency

αλ used by population synthesis would predict a lower formation rate of short period systems

than long period systems (see Section 2.5).

At the shortest period (logP id = −1.3 in our grids), we find that the systems

undergo case BA then BB mass transfer, which agrees qualitatively with Wang et al. (2009b)

(their Case 4 calculations). However, the super-Eddington wind triggered in our models

leads to less growth during case BA mass transfer than in the models of Wang et al. (2009b).

The bottom and right boundaries are determined by the systems that undergo

helium flashes following stable accretion. In our grids, we compute the required mass

retention efficiency, given MWD and MHe,env when the helium flashes start, for the WD

to grow to MCh, and contour the grids by setting the required efficiency to be greater

than 60%. Wang et al. (2009b) and subsequently Wang et al. (2017) follow through the

evolution of the WD in successive helium flashes by adopting the mass retention efficiencies

computed by Kato & Hachisu (2004) under the optically-thick wind framework. Thereby,

the bottom and right boundaries of Wang et al. (2017) may be more thorough by virtue of

following through the accretion through helium flashes. Nonetheless, given the uncertainties

regarding the helium flash retention efficiency, it is sufficient to observe that our bottom

and right boundaries do not show significant deviation from those of Wang et al. (2017).
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Figure 6.4: A demonstration of why the Ṁcr-prescription of Wang et al. (2017) may fail
to account for some systems undergoing shell ignitions. Two binary runs are performed
at (M i

He,M
i
WD, logP id) = (1.5, 1.0,−0.9), one from our work (blue) and other adopting

the Wang et al. (2009b) prescription (orange). The latter run does not resolve the WD
structure, and since |ṀHe| 6 Ṁcr as the WD nears MCh the Ṁcr-prescription regards this
system as a core ignition system, whereas our work resolves the WD structure and suggests
this system to be a shell ignition system. We also note that the Ṁup of Nomoto (1982) may
be as much as 10% above ours.
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7

The Effect of Enhanced Angular

Momentum Loss

Previous work, and the models in Section 5, have adopted the assumption that

mass is lost from the binary through a fast isotropic wind. However, a slow wind may

gravitationally torque the binary, leading to additional angular momentum loss. In this

section, we investigate the effect of enhanced angular momentum loss on the mass transfer

histories and the TN SN region.

7.1 Parametrization of Angular Momentum Loss

Hachisu et al. (1999) investigated the specific angular momentum by carried by a

spherically symmetric wind blown from a star in a binary. They ejected a number of test

particles from the surface of the mass-losing star, at 0.1 times the inner Roche lobe radius of

the star. They evolved the trajectory of the test particles in the co-rotating frame under the
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Roche potential and Coriolis force, and computed the specific angular momentum carried

by the test particles that manage to escape. They found that when the wind speed is on

the order of the binary orbital speed, aΩorb, the wind gravitationally torques the binary

and extracts more angular momentum. They found the angular momentum parameter lw,

which is defined as
(
J̇w

Ṁw

)
= lwa

2Ωorb , (7.1)

varies as

lw = max

{
1.7− 0.55

(
vRL

aΩorb

)2

,

(
q

1 + q

)2
}
, (7.2)

where vRL is the radial velocity of the wind at the Roche lobe of the mass losing star, and

the limiting value of 1.7 was cited from previous restricted three-body problem (Nariai 1975,

Nariai & Sugimoto 1976) and two-dimensional (equatorial plane) hydrodynamical results

(Sawada et al., 1984). Brooks et al. (2016) used the results of Hachisu et al. (1999) to suggest

that wind velocities & 1000 km s−1 were required to justify the fast wind assumption (see

their Figure 4). As noted by Brookshaw & Tavani (1993), at slow wind speeds complex

trajectories result, and therefore a hydrodynamical approach likely needs to be adopted.

Therefore, we view the use of results for vRL/aΩorb . 2 from Hachisu et al. (1999) with

some caution.

Jahanara et al. (2005) performed a three-dimensional hydrodynamic calculation

in the co-rotating frame for the case where the mass-losing component fills half of its Roche

lobe, for various initial wind speeds and mass ratios. They also conclude that slow wind

speeds can significantly shrink the binary orbit. However, their conclusion is that the specific

angular momentum carried by a wind outflow is smaller than that found by Hachisu et al.

(1999); the functional dependence of the wind specific angular momentum on the ratio of
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wind radial velocity at the Roche lobe vRL to binary orbital speed aΩorb, is also different.

For the case of q = 1, they find that the wind specific angular momentum is

lw = 0.25 +
0.12

vRL/aΩorb + 0.02
. (7.3)

The 0.25 represents the fast wind limit of [q/(1 + q)]2 for q = 1. The binaries we consider

typically have 0.5 . q . 2, so we make the rough approximation that Equation (7.3)

continues to hold. We then separately apply the fast wind limit (i.e., that lw cannot fall

below [q/(1 + q)]2) to this expression.

We perform binary calculations with both the Hachisu and Jahanara prescriptions,

using (M i
He,M

i
WD, logP id) = (1.6, 1.0,−0.9). We vary the assumed radial wind speed at the

Roche lobe vRL (where the binary orbital speed for this system is aΩorb ≈ 600 km s−1), and

the results are shown in Figure 7.1. Panel (a) shows the calculations adopting the Hachisu

prescription, and we find a bifurcation at a wind speed of ≈ 900 km s−1, above which a mass

transfer runaway and subsequently a merger will likely result. In Panel (b), the Jahanara

prescription only leads to a noticeable change in the mass transfer history at a wind speed of

≈ 200 km s−1, below which we estimate that a mass transfer runaway will likely result. We

note here that both test-particle and hydrodynamic calculations would likely suggest that

mass loss in the red-giant regime through the RLOF scenario (corresponding to vRL ≈ 0),

as briefly mentioned by Brooks et al. (2016), would lead to a mass transfer runaway.

However, when investigating the effect of enhanced wind angular momentum loss

on the TN SN region, we prefer to be agnostic about the physical mechanism regarding

the wind angular momentum loss. We have chosen to parametrize this via a variant of the

γ formalism (Nelemans et al., 2000). Instead of using the total change in binary angular

momentum and binary mass, we use the angular momentum and mass loss rates, and
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parametrize the angular momentum loss with γ as follows

J̇w

J
= γ

Ṁw

M
, (7.4)

which corresponds to

lw = γ
q

(1 + q)2
, (7.5)

so the fast wind assumption corresponds to γ = q.

In Panels (a) and (b) of Figure 7.2, we provide the value of γ as a function of mass

ratio q, given a certain ratio of wind speed over binary orbital speed vw/aΩorb. That is,

given a mass ratio and value of vw/aΩorb, we find the value of wind angular momentum

parameter lw assuming either the Hachisu or Jahanara prescriptions, and then invert to

find the corresponding value of γ. Similarly, if future work develops a new prescription, its

effective value of γ can be computed and then compared with our results.

7.2 The Effect of Enhanced Wind Specific Angular Momen-

tum Loss on the Mass Transfer History

Now we examine the effect of additional wind angular momentum loss on the mass

transfer for a given period and donor mass. We illustrate this by performing binary cal-

culations with (M i
He,M

i
WD, logP id) = (1.6, 1.0,−0.9), while varying the angular momentum

loss parameter γ.

Figure 7.3 shows the results of several values of γ. The base reference is the fast

wind case, where the WD undergoes an off-center carbon ignition. The evolution of the

γ = 1.5 case is almost identical to that of the fast wind case, since the fast wind case implies
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Figure 7.1: Two plots showing the mass transfer histories of binary runs adopting the
Hachisu prescription (a) and the Jahanara prescription (b). The wind speeds adopted in
Panel (a) range from 600 to 1200 km s−1, and 200 to 1000 km s−1 in Panel (b), both in steps
of 200 km s−1. For the system (M i

He,M
i
WD, logP id) = (1.6, 1.0,−0.9) where aΩorb ≈ 600

km s−1, a mass transfer runaway occurs for a wind speed (measured radially at the Roche
radius) of vw . 900 km s−1 assuming the Hachisu prescription, and a much lower vw < 200
km s−1 assuming the Jahanara prescription.
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Figure 7.2: The values of γ as a function of mass ratio q and ratio of wind speed over orbital
speed vw/aΩorb, assuming the Hachisu (a) and Jahanara (b) prescriptions. The straight
line cutoff at the bottom is due to the fast wind limit. The limit vw = 0 corresponds to
γ ≈ 8 and γ ≈ 25 for the Hachisu and Jahanara prescriptions respectively.

a value of γ = q, and during the early phase of mass transfer, where wind mass loss and

wind angular momentum loss peak, the mass ratio is very close to q = 1.6.

As the value of γ increases, the specific angular momentum carried by the wind

increases, leading to an increase in the peak mass loss rate. This has several consequences

on the mass transfer in the binary. First, the required mass loss rate may exceed that able

to be launched in a wind (see Section 8); a common envelope may form when the wind-

driving process is inefficient. On the other hand, if a wind is successfully launched despite

the larger Ṁw, then the WD still accretes at Ṁup, but the donor is left with less mass to

transfer at later times due to this rapid stripping at the beginning. The donor is left with

less envelope mass, leading to lower |ṀHe|. In other words, higher wind angular momentum

loss leads to higher |ṀHe| initially and lower |ṀHe| at later times. Since the WD accretes at

Ṁup anyways, on average the WD accretes at a lower rate for a higher wind specific angular
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Figure 7.3: The mass transfer histories of runs at (M i
He,M

i
WD, logP id) = (1.6, 1.0,−0.9) of

various values of γ, ranging from 1.5 to 3.0. As γ increases, |ṀHe| increases initially but is
lower at later times. A core ignition is thus favored at higher γ. Also, at the largest values
of γ shown, the rapid mass transfer throws the donor envelope out of thermal equilibrium,
leading to a time-dependent adjustment of |ṀHe|.

momentum. From previous discussion we see that this means less compressional heating in

the envelope and a core ignition becomes more favorable. Another possibility is, however,

that the donor envelope is effectively stripped that the donor underfills its own Roche lobe

again. Then we will obtain a detached double WD binary.

In addition, when the wind carries high specific angular momentum, for example,

γ = 3, then the donor may encounter difficulty adjusting its thermal structure to the rapid

mass loss. When the mass transfer timescale comes close to, or is even shorter than, the

donor’s Kelvin-Helmholtz timescale, the donor envelope may be thrown out of thermal

equilibrium. Then we observe time-dependent behavior in the donor. When the donor is

out of thermal equilibrium, it may only be able to adjust its thermal structure after its

envelope mass has been reduced by mass transfer, after which it may overfill its Roche lobe

again. This interplay between mass transfer and thermal adjustment is observed in our

models for the donors at the shorter periods and with higher masses. The effect of the mass
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transfer variability due to the donor’s thermal response can be seen in the γ = 3 case, where

the donor mass transfer rate may at times drop below Ṁup. In general this leads to lower

compressional heating, and favors a core ignition. However, as noted before, it is also likely

that the donor will eventually be stripped of its envelope and form a detached double WD

binary.

7.2.1 The Effect of Enhanced Angular Momentum Loss on the TN SN

Region

Now we move on to describe the effect of additional wind angular momentum loss

on the TN SN region. With greater angular momentum loss from the system, the peak

mass transfer rate is higher, as explained previously. This has several global effects on the

parameter space which we show via grids run at different γ in Figure 7.4.

As is observed in the γ = 2 grid (panel a), the boundary between core and off-

center carbon ignitions moves to higher donor mass at the shorter periods (compared to

the fiducial Figure 5.3, panel c). This is the result of a mass transfer variability due to the

donor’s thermal response. The lag between mass transfer depleting the donor envelope and

the donor envelope’s thermal adjustment to mass loss leads to large variations in |ṀHe|, but

on average contributes to lower ṀWD and thus avoids an off-center ignition in the WD.

However, for even stronger angular momentum loss (γ = 2.5 & 3, panels b & c),

the short period and high mass donor region leads to |ṀHe| so high that it is likely that

either a mass transfer runaway and hence a common envelope occurs, or the donor is rapidly

stripped of its envelope to form a detached double WD binary.

The same can be said for the long period regions. The regime for detached double



78

WD binary slightly broadens with wind specific angular momentum, due to greater mass

loss from the donor as a result of additional angular momentum loss.

While the regime for helium flashes is in general unchanged since wind mass loss is

insignificant, the TN SN region slightly broadens (for γ = 2) but then shrinks (for γ = 2.5

& 3) as γ goes up. In fact, the missing systems in the top left corner of the γ = 2.5 &

3 grids are likely systems undergoing mass transfer runaways. A calculation of the energy

and momentum budgets shows that these systems are unlikely to sustain very high wind

mass loss rates, and thus may end up in a common envelope. If the wind specific angular

momentum goes up even more, it is likely that all systems on the grid will form a common

envelope, for which the final outcome is unclear but seems unlikely to be a TN SN.

Nevertheless, simply by observing the change from the fast wind grid through the

γ = 3 grid, we may see that the parameter space for core ignitions, if a common envelope

is not formed, remains relatively unchanged – the only boundary affected is, as expected,

the upper boundary where wind mass loss occurs. The upper boundary shifts by a model

or two, but does not lead to a qualitative change. This is because a change of ≈ 0.1 M� in

M i
He is sufficient to introduce a change in the WD accretion rate affecting the occurrence of

off-center ignition. Therefore, either strong angular momentum loss leads to the formation

of a common envelope for all systems, or even moderate angular momentum loss can only

lead to slight shifts in the TN SN region.



79

1.0

1.5

2.0
(a : γ = q) (b : γ = 2.0)

−1.0 −0.5 0.0
1.0

1.5

2.0
(c : γ = 2.5)

−1.0 −0.5 0.0

(d : γ = 3.0)

0.0

0.2

0.4

0.6

0.8

1.0

H
e

F
la

sh
E

ffi
ci

en
cy

logP i
d

M
i H

e
(M
�

)

Figure 7.4: Similar to Figure 5.3, but with a fixed M i
WD = 1.0 and different values of γ.

For comparison with fixed values of γ, we place the fast wind limit grid, where γ = q, in
Panel (a). We observe that the TN SN region grows at γ = 2.0 compared to that at the
fast wind limit, but shrinks for larger values of γ due to more systems experiencing mass
transfer runaways. The empty spots on the top left corner are systems undergoing mass
transfer runaways, which the energy budget shows will likely end up in an common envelope.
We have not run through the models at the bottom left corner since these systems do not
experience wind mass loss.
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8

Energy and Momentum Budget

Throughout this paper, we invoke the presence of an optically-thick wind (OTW)

that removes any donated mass in excess of Ṁup from the binary system. This wind mass

loss rate was allowed to be arbitrarily high. Here we compute the required energy and

momentum needed for the wind to be launched and compare this to the properties of

observed OTWs in Wolf-Rayet stars.

Energy and momentum conservation constrain the occurrence of mass loss from

the binary. The kinetic energy of the wind must be provided by the luminosity of the WD,

possibly with the help of the orbital energy of the binary if the wind torque is significant.

For now we will assume the fast wind limit such that the wind does not torque the binary

as it leaves the system. Then, we can find the required efficiency factor, η, for converting

radiative power in the luminosity of the WD to the kinetic power of the wind from the

equality Ṁwv
2
w = 2ηLWD. Adopting a wind velocity of vw = 1000 km s−1 we have

η ≈ 0.03

(
Ṁw

10−5 M� yr−1

)(
LWD

5× 104 L�

)−1

. (8.1)

For these representative fiducial parameters, powering the wind requires only a few percent
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of the luminosity of the WD.

In Figure 8.1 we show the maximum value of η during the mass transfer, for each

binary model in the fast wind grid (panel a) and the γ = 2.5 grid (panel b). We find that in

order to drive a wind of wind speed vw = 1000 km s−1, for the fast wind grid at most a≈ 10%

minimum energy transfer efficiency is required, whereas some systems in the γ = 2.5 grid

require a ≈ 30% minimum energy transfer efficiency. The systems with required efficiency

of tens of percent will likely face a tight energy constraint and may become inefficient in

driving a wind. For the fast wind grid, this occurs mostly for the high mass donor and long

period systems. For the γ = 2.5 grid, the high mass donors at very short periods also face

the same constraint. However, under the assumption of a successful wind, these systems all

form detached double WD binaries. Therefore, while a failed wind might suggest instead a

common envelope, this difference does not directly affect our identification of which systems

undergo a core ignition.

However, the value of η in Equation (8.1) is sensitive to our choice of vw. The

fiducial wind speed of 1000 km s−1 is consistent with the fast wind assumption (of order the

orbital speed). In Section 7 of Wong & Schwab (2019) we compute OTW models to further

justify this choice: because the wind is launched from the iron bump, the wind launching

radius has a much lower escape velocity than the surface of the WD. If instead, the wind

were launched near the burning shell, or approximately RcWD (≈ 0.008 R�) then the escape

speed would be vesc =
√
GMWD/RcWD ≈ 7000 km s−1 for a 1 M� WD. This would imply

that the systems with log η & −1.7 in Figure 8.1 would not be energetically able to drive

a wind. The high mass systems still face stringent energy constraints on wind-driving, but

again, either they face the fate of common envelope, or assuming successful wind-driving,
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the fate of an off-center ignition in the WD.

We can also ask whether LWD can supply sufficient momentum to the wind to

drive the outflow. In this case we can define the required momentum efficiency factor, ζ,

from the equality Ṁwvwc = ζLWD. Again adopting a wind velocity of vw = 1000 km s−1

we have

ζ ≈ 10

(
Ṁw

10−5 M� yr−1

)(
LWD

5× 104 L�

)−1

. (8.2)

In this case, the required momentum transfer efficiency for the fiducial parameters is signif-

icantly greater than unity. This then requires the presence of multiple scattering in order to

extract sufficient momentum from the radiation field. The winds in Wolf-Rayet stars often

exhibit ζ ∼ 10, where this can be physically explained by wind launching at an optical

depth τ ∼ ζ (Nugis & Lamers, 2002, and references therein). Thus values of ζ � 1 are

consistent with our assumption of an OTW, in which the acceleration region occurs near

the iron-bump at relatively high optical depth.

Some Wolf-Rayet stars have reported momentum efficiencies ≈ 50 (Hamann et al.,

1995), though inferred mass loss rates may now be a factor of a few lower after accouting

for clumping (e.g., Hamann & Koesterke, 1998; Smith, 2014). On this basis, allowing values

of ζ up to 50 in our mass loss prescription leads to only a few binary systems that would

be deemed inefficient in driving a wind outflow, and thus likely enter a phase of common

envelope evolution. Figure 8.1 shows the maximum value of ζ during the mass transfer,

for each binary model in the fast wind grid (panel c) and the γ = 2.5 grid (panel d).

The systems that approach or exceed ζ = 50 are the highest mass donors, which assuming

successful wind-driving would most likely lead to an off-center ignition in the WD or form

a detached double WD binary. Therefore, our assumptions about the momentum efficiency
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do not affect our conclusions about core ignitions unless we restrict ζ . 10.

However, some past work does indirectly enforce a restrictive constraint on ζ in the

binary evolution(e.g., Langer et al., 2000; Tauris et al., 2013). Recall that the Eddington

mass transfer rate can be defined by asking when the rate of energy release of the accreted

material (via both the liberation of gravitational potential energy and nuclear burning)

reaches the (electron-scattering) Eddington luminosity (e.g., Tauris et al., 2013). For helium

accretion on a WD this is ṀEdd ∼ 3× 10−6 M� yr−1. Note that this is roughly an order of

magnitude larger than for hydrogen accretion because of the lower specific nuclear energy

release and the lower electron scattering opacity. For hydrogen accretion, WDs happen to

have the interesting property that vescc/εnuc ∼ 1 (Langer et al., 2000). In our case for helium

accretion and a wind velocity below the escape velcocity of the WD surface, we similarly

have vwc/εHe ∼ 1. These quantities being of order unity implies that when Ṁw ∼ ṀEdd,

the wind momentum is of order the photon momentum, that is ζ ∼ 1. Based on arguments

along these lines, some past work has assumed that material cannot be efficiently lost from

the system if Ṁw > 3ṀEdd, and thus above this mass transfer rate a common envelope

results (Langer et al., 2000; Tauris et al., 2013). In contrast, in our work we impose no cap

on Ṁw. Physically, we emphasize that this is equivalent to the assumption that ζ � 1 is

allowed via mulitple scattering.
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Figure 8.1: Plots showing the energy and momentum budgets of the binary runs. Panels
(a) and (b) compare the energy budgets of the fast wind grid and the γ = 2.5 grid assuming
a wind speed of vw = 1000 km s−1; in some systems of the γ = 2.5 grid the maximum wind
kinetic energy may be as high as 10% of LWD. Panels (c) and (d) compare the momentum
budgets. We view the systems with ζ > 50 unlikely drivers of a wind, based on the observed
limits of Wolf-Rayet stars.
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9

Discussion

We briefly discuss some of the uncertainties associated with our modeling assump-

tions of solar metallicity stars in Section 9.0.1 and of non-rotating, spherically-symmetric

WDs in Sections 9.1 and 9.2. In Section 9.3 we discuss the formation probability distri-

bution of He star - WD binaries. In Section 9.4, we describe how our models fit in with

observed systems and observational constraints on TN SNe progenitor systems.

9.0.1 Effects of Metallicity

Metallicity may have an effect on the helium donor channel, but we do not explore

that in this work where all models assume Z = 0.02. The optically-thick wind is accelerated

by the iron bump opacity, so the wind efficiency may be lower for lower metallicity (Kato,

1997), with a minimum metallicity Z ≈ 0.002 for the wind to occur (Kobayashi et al., 1998).

Wang & Han (2010) also found that the TN SN region broadens to higher M i
He and longer

logP id for higher metallicity, which leads to a lower minimum M i
WD. Overall, they found

the TN SN rates are higher with shorter delay times for higher metallicity.
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9.1 Effects of Rotation

In our binary calculations we have evolved both components as non-rotating mod-

els. In reality, sources of torque will likely enter into the binary interaction, with conse-

quences for the stellar structures of both components, orbital angular momentum evolution,

and possibly the final outcome of the system. Here we describe the possible effects that

may enter if rotation is accounted for.

When rotation is accounted for, the angular momentum evolution of the system

and each component becomes complicated. In the case of double WD systems, the WD spins

may be both an important drain and source of the orbital angular momentum (Gokhale

et al., 2007), but it is unclear how this would affect the stability of the He star-WD systems

here. However, it is likely that the WD will spin up from the accretion of high specific

angular momentum material, up to critical rotation (e.g., Langer et al. 2000). The angular

momentum profile of the WD is still currently under debate, subject to the rotational

instabilities at work. Some previous studies have suggested that either only uniform rotation

or differential rotation may be attained (e.g., Yoon et al., 2004; Saio & Nomoto, 2004; Piro,

2008), whereas recently Ghosh & Wheeler (2017) have suggested both are possible assuming

active baroclinic instability.

Rapid rotation has important implications on the stellar structure of the WD.

The transport of angular momentum into the WD interior may provide additional support

through the centrifugal force and lead to a larger WD radius. Previous studies have shown

that under differential rotation, lower central densities are attained at the conventional

Chandrasekhar mass, and so the WD may accrete up to much higher mass, up to ≈ 2.0 M�

(e.g., Yoon et al. 2004). Only when the WD spins down can its central density reach carbon
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ignition, leading to a super-Chandrasekhar event in the spin-up/spin-down scenario (e.g.,

Di Stefano et al. 2011, Justham 2011). More importantly, rotationally-induced chemical

mixing may lead to different helium shell burning conditions. Yoon et al. (2004) have

studied the accretion of helium onto a CO WD at mass transfer rates in the helium flash

regime. They have found that the rotationally-induced chemical mixing leads to a larger

helium burning zone, and the enhanced transport of helium into the core leads to stronger

energy release through the reaction 12C(α, γ)16O. In addition, the lower density at the

burning shell supported by the centrifugal force helps lift the degeneracy. As a result of the

larger geometric thickness, lower degeneracy, and higher temperature at the burning shell,

the strength of the helium flashes is greatly reduced.

In summary, even the qualitative effects of including rotation on the TN SN region

are unclear. Rotation may require the WD to grow to a larger mass to reach a core ignition,

thus requiring systems that can transfer more helium or begin from more massive WDs.

Alternatively, the higher helium flash retention fraction attainable may allow for more

efficient growth, partially or totally cancelling the other effect.

9.2 The Accretion Picture

In this study we have assumed that a radiation-driven wind will be blown from

the WD as the WD expands to red-giant dimensions. However, it remains to be elucidated

how the mass transferred is partially accreted and the rest lost through a wind in a realistic

three-dimensional picture. In addition, it is unclear whether a direct-impact accretion may

result when the WD expands. We do not plan to resolve these issues altogether, which

likely requires three-dimensional simulations, but we describe the unresolved issues here.
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To our knowledge, all works on the helium donor, Chandrasekhar-mass WD chan-

nel, have assumed that a wind carries away the excess mass from the WD once it expands

(e.g., Yoon & Langer 2003, Wang et al. 2009a, Brooks et al. 2016). This is reasonable given

that the only other alternative is a common envelope event (Nomoto, 1982). However, it

is unclear what the flow structure would look like. The optically-thick wind calculations

are generally made assuming spherical symmetry (e.g., Kato & Hachisu 1994). Kato et al.

(2017) have proposed that in a steady state, the WD may accrete through an accretion disk

and a bipolar, optically-thick wind may blow from the WD. Observations of the helium

nova V445 Pup suggest a highly collimated outflow (Woudt et al., 2009). Extending the

one-dimensional results to three-dimensions in order to study the bipolar nature of the wind

and the influence of the companion may be important and will require additional work.

There is, in addition, the question of whether an accretion disk can always be

formed. In general, when the WD radius RWD is smaller than the circularization radius

Rcirc (defined by the Keplerian radius material would have carrying the specific angular

momentum of the inner Lagrange point), a Keplerian disk will likely be formed. The

disk will transport material to the WD surface with specific angular momentum equal to

√
GMWDRWD. But when RWD > Rcirc, one question is how deep inside the WD envelope

the accreted material would settle, as determined by the ram pressure of the accreted

material. In Figure 9.1, we allow one of our WD models to expand up to 80% of its Roche

radius, and plot the pressure profiles of the WD at different epochs. We also estimate the

ram pressure of the incoming material, given by Pram = ρv2. We estimate ρv ∼ (ρcs,iso)L1

by mass continuity, where the density around L1 is given by ṀΩ2/c3
s,L1 from Lubow & Shu

(1975), and cs,L1 is taken from the conditions at the outermost zone of the He star. The
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other v term is estimated as the free-fall velocity
√
GMWD/RWD onto the WD. Since the

radius for pressure equilibrium is mostly at a smaller radius than the circularization radius,

it seems possible that the accretion stream will penetrate the envelope and still form an

accretion disk.

Under the accretion picture being considered here, the accretion disk will likely

be embedded in an inflated envelope/wind structure with high entropy. Can heat exchange

between the envelope and the disk alter the disk structure? The disk thermal timescale

(Pringle, 1981) is roughly tth,disk ≈ α−1tφ = α−1
√
R3/GM ≈ 500 s taking α = 0.1, R = 0.1

R� and M = M�. The photon diffusion timescale through the deeper parts of the envelope

is tdiff ≈ R2ρκ/c ≈ 104 s taking ρ ≈ 10−4 g cm−3 and κ ≈ 0.2 cm2 g−1. At larger

radii (& 0.5 R�), outside the acceleration region of the wind, r2ρ = Ṁw/4πvw and so

tdiff ≈ Ṁwκ/4πvwc ≈ 30 s using Ṁw ≈ 10−5 M� yr−1 and vw ≈ 107 cm s−1. Comparing

these timescales, we suggest that heat exchange between the disk and the wind/envelope

may be rapid near the outer edge of the disk, where tdiff < tth,disk, perhaps inflating the

outer disk, but the inner disk should remain intact.

9.3 Formation Probability Distribution of He star - CO WD

systems

One may be curious about the distributions in the He star mass and binary orbital

period when the He star - CO WD binary forms. We refer the reader to Figure 5 of Claeys

et al. (2014) as one source. In Figure 9.2 we show the distributions in He star mass and

binary orbital period with a WD mass of 0.95 M� 6 MWD 6 1.05 M� from the binary
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Figure 9.1: Calculations exploring whether a disk can be formed. The top panel shows
the WD pressure profiles as a function of radius in solid lines, and the horizontal dashed
lines show the estimated values of the ram pressure of the accretion stream. The bottom
panel shows the nuclear burning rate εnuc, where the peak denotes the helium-burning shell,
and the circularization radius for a period of logPd = −0.9, Rcirc ≈ 0.15 R�. This shows
that the accreted material will likely form a disk despite the rapid expansion of the WD
envelope.

population synthesis calculations in Toonen et al. (2012), which is aimed at investigating

double WD populations. This means the He star - CO WD binaries in the distributions

shown in Figure 9.2 have undergone two common envelope episodes. The difference between

panels (a) and (b) lies in the common envelope prescriptions being used in the calculations.

The first common envelope calculation is computed with the α formalism. Panel (a) assumes

the α formalism again in the second common envelope episode, whereas panel (b) assumes

the γ formalism. The values adopted in Toonen et al. (2012) are αλ = 2 and γ = 1.75,

based on the optimization by Nelemans et al. (2000).

The result of using different common envelope prescriptions can be seen in Figure

9.2. Panel (a), which uses the α formalism in both common envelope episodes, results

in a more even distribution in M i
He and logP id. There is a cluster of binaries for donor
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mass 1.6-1.7 M� and logP id between −0.6 and −0.1. On the contrary, panel (b), which

uses the γ formalism in the second common envelope episode, results in a very concentrated

distribution of binaries at donor mass 1.6-1.7 M� and logP id between −0.4 and −0.3. Longer

periods are more favored in panel (b).

The common envelope ejection efficiency is another important parameter that

enters these population synthesis studies. The parameter αλ = 2 used by Toonen et al.

(2012) implies a highly efficient common envelope ejection, which leads to higher formation

rates of long period systems. In contrast, the population synthesis study by Wang et al.

(2009a) adopts αλ = 0.5 in one case, which leads to a higher contribution to TN SNe by

short period systems of logP id 6 −1.2.

Given the outcomes shown in Figure 5.3, it appears that the scenario in the Figure

9.2, panel (a) would predict a fair fraction of core ignitions (and hence TN SNe) whereas

in Figure 9.2, panel (b) almost all of the predicted systems are at periods where we would

predict the formation of detached double WDs. It would be useful to better characterize the

properties of the He star - WD binaries, as there are few known systems with the properties

of the binaries modeled here. The best example, HD 49798, is still not a direct analogue

due to likely hosting a more massive ONe WD (Popov et al., 2018).

9.4 Observational Constraints

It remains an important task to observationally distinguish the different scenarios

that may contribute to TN SNe. We discuss the several properties that may be important

in identifying the systems emanating from the helium donor channel.
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Figure 9.2: Population synthesis results from Toonen et al. (2012) of He star - WD systems
resulting from two common envelope events. We choose systems with MWD of 0.95-1.05
M� which may inform the properties of the primordial systems in our work. Panel (a) uses
the α formalism in both events, whereas panel (b) uses the α formalism followed by the γ
formalism. The latter appears to favor longer period systems.
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9.4.1 Delay Times

Studies have suggested that the helium donor channel may only be a sub-channel

to SNe Ia (e.g., Yoon & Langer 2003), contributing to a galactic rate of ∼ 0.2× 10−4 yr−1

(Wang et al., 2017). Nevertheless the helium donor channel is an important channel to SNe

Ia for short delay times (e.g., Ruiter et al. 2009). It is therefore likely that thermonuclear

supernovae produced by this channel may be observed in late-type galaxies, possibly offering

an explanation for the preference of SNe Iax for late-type galaxies (Foley et al., 2013) and

their delay times of 50-100 Myr (Takaro et al. in prep.).

9.4.2 Progenitor System Evolutionary Phases

Helium donor channel systems spend time in several evolutionary phases in ad-

vance of explosion. For an initial donor mass higher than ≈ 1.3 M�, the system may undergo

an optically-thick wind phase which lasts about ≈ 104 years and lose a total mass ranging

from 0.01 M� for the ≈ 1.3 M� donors to more than 0.1 M� for higher mass donors. These

systems will then undergo a phase of stable mass transfer for another ≈ 104 years, where

they appear as supersoft x-ray sources (SSS; van den Heuvel et al. 1992). The systems

lower than ≈ 1.3 M� may always appear as SSS, for up to ∼ 105 years. The circumstellar

material originating from the helium flashes, or the wind material during the optically-thick

wind phase, may obscure the supersoft x-ray from the underlying stably accreting WD. It is

still under debate whether circumstellar material may be sufficient to obscure SSS systems

(e.g., Nielsen et al. 2013, Wheeler & Pooley 2013, Nielsen & Gilfanov 2015), and further

investigations may look into non-solar composition materials, such as the helium-rich ma-

terial in our systems and carbon-enriched materials as seen in the helium nova V445 Pup
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(Ashok & Banerjee, 2003).

9.4.3 Pre-explosion

Some of the constraining pre-explosive properties the helium donor systems are

the luminosity and color of the He star. In particular, the blue point source in the Hubble

pre-explosion images for the Type Iax SN2012Z has been suggested to be a ≈ 2 M� He star

(SN 2012Z-S1; McCully et al. 2014). To relate to SN 2012Z-S1, we examine the likely system

properties of our models when the WD reaches MCh. In Panel (a) of Figure 9.3, we report

the He donor mass by the end of the simulation Mf
He, which represents an upper limit since

many models (i.e., those undergoing helium flashes) terminate before the WD reaches MCh.

The black thick contour delineates the likely TN SN progenitors on the logP id−M i
He space.

It is likely that any progenitors from this channel have a He star of mass ≈ 0.9 − 1.1 M�

at the time of the WD explosion. The likely He star luminosity is log(LHe/L�) ≈ 3.4 − 4,

as can be seen in Panel (b). The luminosities reported there are likely to be lower limits,

since the He star will gradually evolve to higher luminosities due to the continued evolution

of the He star. Comparing this with Panel (a), Figure 2 of Liu et al. (2015) which stacks

the pre-explosion model properties of the helium donor channel, our models are situated

near the upper end of the luminosity range spanned by their models. Our models also

span roughly the same range in effective temperature as the models of Liu et al. (2015),

log(Teff/K) ≈ 4.5− 5.0, but to convert into the colors observed by Hubble of SN 2012Z-S1

one needs proper modeling of the He star atmospheres.
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9.4.4 Companion Interaction with Supernova

Theories predict that the impact of supernova ejecta onto the companion should

produce a shock and excess emission in the early light curve (e.g., Kasen 2010). A stronger

constraint on the helium donor channel comes from the detection of helium in the spectra.

The helium comes from entrainment of companion material in the ejecta. Pan et al. (2010)

and Liu et al. (2013) have simulated the supernova impact onto a He star companion. The

latter have found a stripping of 2% to 5% of the initial companion mass. In relating to

these works, our He star models where the WD grows to MCh have very similar structures

to model He02 of Liu et al. (2013), but are slightly more evolved than the models of Pan

et al. (2010, 2012) (closest to their He-WDc). The entrainment of companion material may

be related to the presence of He I lines in the spectra of 2 Type Iax supernovae, SNe 2004cs

and 2007J (Foley et al., 2013). However, note that Jacobson-Galan et al. (2018) report non-

detections of He lines in late-time Iax spectra corresponding to upper limits comparable to

the theoretically-predicted stripped masses.

Furthermore, Pan et al. (2013, 2014) predict that after the supernova explosion,

the remnant He stars would release the energy deposited by the supernova impact, expand

and become luminous helium OB stars for ≈ 10− 30 years and later sdO-like stars. These

may inform searches for the companion shortly after the supernova explosion, or within

galactic supernova remnants.

9.4.5 Ejected Companions

In the aftermath of the TN SN, the He donor will likely survive and the WD may

even leave a bound remnant. Either of these components may be ejected from the system,
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at the orbital velocity if the system loses roughly more than half of the total mass. Our

models predict that at the moment of the supernova, the orbital velocity of the He star is

in the range of ≈ 200− 450 km s−1, and that of the WD is about ≈ 100− 350 km s−1. In

comparison, Wang & Han (2009) have found He star pre-explosion orbital velocities in the

range 300− 500 km s−1 (their Fig. 1). The upper limit in their He star orbital velocities is

slightly higher than ours possibly since their binary evolution code allows a shorter period

system to form (see Section 6.3).

In addition, interaction with the supernova may introduce a kick velocity to the

He star (e.g., Marietta et al., 2000). After accounting for the kick velocity using momentum

conservation, Wang & Han (2009) found spatial velocities ranging from 400 to 700 km s−1.

The more recent hydrodynamic simulations by Liu et al. (2013) have suggested that the He

star would receive a small kick of ≈ 60 km s−1. Thus, we suggest that the spatial velocities

of ejected He stars are about ≈ 300 − 600 km s−1, slightly lower than those in Wang &

Han (2009). Our results are in agreement with models He-WDc or He-WDd of Pan et al.

(2013), which are the closest models to our He star models at TN SN and predict a linear

velocity of ≈ 400 − 500 km s−1 for the remnant He star. Thus, the surviving donors from

this channel can produce a population of high velocity He stars, though the channel likely

cannot produce the ≈ 1000 km s−1 hypervelocity sdO star US 708 (Hirsch et al., 2005; Geier

et al., 2015).

9.4.6 He Nova Luminosities & Colors

The helium donor channel also gives rise to the phenomenon of helium novae, as

in V445 Pup (Ashok & Banerjee, 2003). An exciting possibility for V445 Pup is that it may
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grow up to MCh, which may be evaluated from the component masses and the binary orbital

period. Based on pre-explosion plate archives, and a distance derived from expansion of

the nova nebula, Woudt et al. (2009) have derived a pre-explosion He star luminosity of

log(LHe/L�) ≈ 3.3 − 4.3. The large uncertainty is based on whether a large circumstellar

reddening is to be corrected for, since the color from optical V band and near-infrared K

band appears too red for a He star (Woudt et al., 2009). Goranskij et al. (2010) have

suggested that a pre-explosion He star luminosity of log(LHe/L�) ≈ 3.0, and derived a

variability period of ≈ 0.65 days through constructing light curves from digitized plates.

We discuss the relation of the V445 Pup system to our parameter space based

on these observations. The black thin contour in each panel of Figure 9.3 delineates the

systems which undergo helium flashes. In our simulations, the final period does not deviate

much from the initial period, so the long period suggested by the above studies places the

V445 Pup system on the right side of the contours. The systems on the right have such

high initial mass transfer rates that the WD starts helium flashes when the donor envelope

is almost depleted; this may be said of the He star of V445 Pup. Panel (a) indicates that

the He star of V445 Pup is likely to have a mass of 1.0 M� or lower; whereas the bolometric

luminosity is likely to be log(LHe/L�) ≈ 3.8 and above. Furthermore, the nova light curve

fitting by Kato et al. (2008) under the optically-thick wind framework and assumption of

free-free absorption suggests a WD mass of > 1.35 M�. However, given the long period, for

the WD to have a mass of > 1.35 M� when it undergoes helium flashes, we suggest that

the initial WD is more massive than 1.0 M�, and the helium flashes have high retention

efficiencies. If the initial WD is indeed more massive than 1.0 M�, it is possible that the

WD is in fact a massive ONe WD, although Kato et al. (2008) have disfavored this noting
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that there was no indication of neon during the nebular phase of the nova. Alternatively,

a downward revision of the current WD mass may be required. If the initial WD mass is

≈ 1.05 M�, the WD may barely grow up to the Chandrasekhar mass according to our grid.

Environment Densities

Finally, the environment properties of both TN SNe and helium novae from the

helium donor channel can be tested from observations. In particular, the fast wind ema-

nating from the WD during the optically-thick wind phase will likely form a wind-blown

cavity around the system (Badenes et al., 2007). This may inform inferences from super-

nova remnants. On the other hand, inferences about environmental density profiles have

been made during the first ∼year after the supernova explosion through radio and x-ray

observations for example (see Chomiuk et al. 2016 and references therein). In the helium

donor channel, the WD wind will likely have ceased for ≈ 104 years before TN SN. The

source of any inferred circumstellar material would thus likely be nova shells ejected more

recently before the TN SN.
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Figure 9.3: Masses (panel a) and luminosities (panel b) of the He stars for each system in
our fiducial grid (MWD = 1.0 M�) by the end of our binary run. As discussed in the text,
the masses are upper limits and the luminosities are lower limits to the properties at the
time of explosion. The black thick contour delineates the systems where the WD eventually
reaches MCh, whereas the black thin contour includes the systems that eventually enter the
helium flash regime. These two regions overlap since most WDs that are able to grow to
MCh ultimately need to do so through helium flashes.
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Conclusion

Using the stellar evolution code MESA, we study the time-dependent mass transfer

history and binary evolution of a 1.1 − 2.0 M� non-degenerate He star and a 0.9 − 1.05

M� CO WD in a 0.05− 1 day orbit. We characterize the possible outcomes: either a core

ignition, off-center ignition, helium flashes, or formation of a detached double WD binary.

We identify the region of this parameter space (i.e., the core ignitions) that can contribute to

thermonuclear supernovae when the WD approaches the Chandrasekhar mass. We model

the full WD structure throughout the mass transfer history, and so can self-consistently

account for the occurrence of an off-center carbon ignition in the WD. In the systems

in which this occurs, it likely precludes the occurrence of thermonuclear supernova. The

results of our work are in agreement with similar previous work by Wang et al. (2017) which

accounted for off-center ignitions via a simpler procedure.

We also critically investigate several important modeling assumptions for these

systems that have not previously been systematically explored. At mass transfer rates

above the upper stability line Ṁup, the WD cannot burn material as efficiently as mass is
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accreted and so rapidly expands. This material is typically assumed to be lost from the

system in a fast isotropic wind that carries the specific angular momentum of the WD.

We quantitatively discuss the possibility of this wind launching and construct simple wind

models that generally confirm the physical plausibility of these winds. However, in the

case of inefficient wind driving the wind speed may not necessarily be fast compared to the

orbital speed, and hence the wind may gravitationally torque the binary. We parameterize

the wind specific angular momentum loss and re-calculate our model grids. We find that

although increased wind angular momentum loss may significantly alter individual mass

transfer histories and lead many modelled systems to undergo a common envelope, that

the shift in the region of parameter space that leads to thermonuclear supernovae is not

significant.

Overall, our work predicts the evolutionary outcome He star - WD binaries as a

function of mass and period. This is of utility for future population synthesis calculations,

for associating observed binary systems with their final fates, for characterizing He nova

systems, and for confronting observations of supernova progenitors.
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Appendix A

Mass Loss Prescription

As we have described in Section 4.1, our binary simulations used of the built-in

implicit scheme for the mass transfer rate in MESA as well as an implicit scheme for the wind

mass loss rate (hereafter the β-scheme) of our own design. In an explicit scheme, wind mass

loss at one step may remove too much mass such that the WD shrinks significantly, leading

to a small mass loss at the second step, which in turn leads to rapid expansion and hence

large mass loss at the third step, etc. For us to obtain converged mass loss rates, we prefer

to implement an implicit scheme instead of an explicit scheme which requires very fine time

steps. The β-scheme is intricately tied to the implicit mass loss scheme and piggybacks on

the latter within the binary check model procedure. Essentially the β-scheme performs a

bisection search for the wind mass loss fraction β = Ṁw/|ṀHe| as follows.

At the start of a step, MESA evolves both stellar components and the binary system

with some value of |ṀHe,current| and βcurrent. Then in the binary check model procedure,

MESA evaluates the value of ṀHe and β from some explicit function if the current step were

to be accepted, where we call the latter βexplicit. The procedure for solving ṀHe implicitly
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is described in (Paxton et al., 2015) briefly summarized in Section 4.1. We only comment

that we usually start the implicit β-scheme only after |ṀHe| is already bounded within some

fraction by the implicit mass transfer scheme. The explicit function for β is given as 1− x,

where x is the retention efficiency of |ṀHe| onto the WD. This depends on the expansion of

the WD, and is quantified as r = RWD/RRL. We apply two limits for the wind mass loss,

the maximum rmax = min(0.6, 10RcWD/RRL) sets a zero retention efficiency x = 0 and the

minimum rmin = 2RcWD/RRL sets a full retention x = 1. In between the wind mass loss

increases increasingly as a function of r:

x0 = 1− r − rmin

rmax − rmin

x =
1

2
[1− cos (πx0)]

We compare the current and proposed next-step values as fβ = βexplicit − βcurrent.

If fβ is within the tolerance ξ, we accept the step. If not, we retake the step and adjust

the value of βcurrent, solving for the root of fβ iteratively by bisection. The upper and

lower bounds for the value of β, βhi and βlo, to be solved for are given by checking the

sign of fβ. If fβ = βexplicit − βcurrent > 0, then the current β is too low that the WD

accumulates mass and expands (which is why βexplicit > βcurrent). This suggests βcurrent

to be a lower bound. Thus we establish βlo = βcurrent and scale-up βcurrent in the next

iteration. If fβ = βexplicit − βcurrent < 0, we perform the analogous procedure with βcurrent

as an upper bound and scale-down βcurrent in the next iteration. Until both bounds βhi and

βlo are established, we will scale βcurrent to find the next guess. Once both βhi and βlo are

established, with the corresponding function values fhi
β and f lo

β , we use a quadratic solve in

MESA to find the next value of β. In general the combination of the implicit mass transfer
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scheme and our β-scheme lead to between 3 and 9 iterations before a step is finally adopted.
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Appendix B

Influence of MESA MLT++

Convective energy transport can become inefficient in radiation-dominated, near-

Eddington stellar envelopes. When convection fails to make the convective regions nearly

adiabatic, this can lead to the formation of a steep entropy gradient near the base of the

convection zone. Especially when this region is moving Lagrangianly (for example, due to

the growth of the core or the shrinking of the envelope due to mass loss), this steep gradient

can lead to a strong timestep constraint. Section 7 of Paxton et al. (2013) describes a

capability in MESA (referred to as MLT++) that artificially enhances the energy transport

in these regions, thus reducing the superadiabaticity and alleviating the numerical issues.

Physically, additional energy transport could be due to three-dimensional effects that are

not captured in standard mixing length theory (e.g., Jiang et al., 2015).

We employ MLT++ in both the He star and the WD. In the WD, it is sometimes

helpful during early He flashes or when the WD envelope is near its maximal extent during

the red giant accretion regime. In the He star, it is particularly helpful as the systems

begin to come out of contact, when the CO core mass is the largest (and the luminosity
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Figure B.1: Comparison of systems with and without MLT++. Models using MLT++ are
numerically easier to evolve to a detached double WD state. The mass transfer histories
show only small (. 10%) differences.

is highest) and the He envelope is small. Since MLT++ does change the envelope structure

of the WD and He star, it can influence the rates at which mass is donated and accepted.

Given that MLT++ is an ad hoc prescription, it is important to demonstrate that our results

do not significantly dependent on its usage.

Figure B.1 compares two sequences of models with and without MLT++. These

begin with MWD = 1.0 M� and at logP id = −0.1, with He stars ranging from 1.5 to 2.0

M�. We found MLT++ was particularly needed for these longer period and higher donor mass

systems (that make detached double WD binaries), where the use of standard MLT severely

limited the timesteps. It is apparent that the donor comes out of contact more easily when

using MLT++, as only these models were able to reach a phase of steeply falling |ṀHe| in the

allowed runtime. The figure shows that the difference in |ṀHe| is smaller than 10%. The

difference is even smaller for shorter period and lower mass systems that lie within the TN

SN region, so we conclude that the usage of MLT++ has little influence on our overall results.



107

Appendix C

Convergence Test

We performed 3 tests to confirm that our results are independent of the adopted

temporal and spatial resolution. Figure C.1 shows our fiducial case (M i
He,M

i
WD, logP id) =

(1.6, 1.0,−0.9) along with 3 other runs with higher spatial/temporal resolution. Higher

spatial resolution is achieved by increasing the number of zones in the WD via the control

mesh delta coeff and higher temporal resolution by limiting the time step based on frac-

tional changes in the He star via varcontrol target. The values adopted are shown in

Table C.1. The “spatial” model has almost twice as many zones around the helium-burning

shell of the WD (≈ 800 zones) as the “fiducial” model (≈ 400 zones). Figure C.1 shows

the evolution of the WD core in temperature-density space and the mass transfer history

in each case. It shows that the models in our fiducial case are indeed converged.
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Figure C.1: Comparison of the fiducial model with (M i
He,M

i
WD, logP id) = (1.6, 1.0,−0.9)

run at different temporal and spatial resolutions. Panel (a) shows the central evolution
of the WD model and panel (b) shows the mass transfer rates. These key quantities are
essentially independent of our resolution choices, indicating these models are numerically
converged.

Run Name varcontrol target mesh delta coeff Steps Max Zones

Fiducial 1× 10−3 0.4 138105 4680
Temporal 4× 10−4 ∗ 0.4 375680 4652

Spatial 1× 10−3 0.2 131320 9196
Both 4× 10−4 ∗ 0.3 396900 6094

Table C.1: Table showing the stellar controls used in each model for testing spatial and
temporal convergence. varcontrol target controls the time step, and mesh delta coeff

controls the number of zones. (∗ : later lowered to 3× 10−4)
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sequence star + white dwarf binary systems towards Type Ia supernovae. , 362, 1046–

1064.

Liu, D., Wang, B., & Han, Z. (2018). The double-degenerate model for the progenitors of

Type Ia supernovae. , 473, 5352–5361.

Liu, Z.-W., Pakmor, R., Seitenzahl, I. R., Hillebrandt, W., Kromer, M., Röpke, F. K.,
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